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This paper investigates three approaches for solving optimization problems of this form.
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g0(y;x)

subject to gi(y;x) ≤ 0, i = 1. . .mI

]

1 The Graphical Approach

Consider the optimization problem given below (it is Test Problem 13 of §7). The variable
y is constrained to be an optimal point for the inner problem, which is enclosed in square
brackets. The outer problem or overall optimization is solved by varying both x and y, but
in the inner problem the variable x is treated as a constant parameter and the optimization
is performed by varying only y.
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g0(y;x) = (y − 8)2 + 1
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g1(y;x) = −3x+ y + 3 ≤ 0

g2(y;x) =
5
3
x− y − 8 ≤ 0

g3(y;x) = x+ y − 7 ≤ 0

g4(y;x) = −y ≤ 0
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At each x ∈ [1, 45
8
] the inner problem of this example is feasible and not unbounded, so for

those values of x it has a minimizing point y⋆(x).
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This example is simple enough that for a given value of x the inner minimization can be
performed by searching the line

L(x) = {y | gi(y; x) ≤ 0, i = 1. . .4}

for the point y⋆(x) where g0(y; x) attains its lowest value. That will be where

dg0
dy

= 2(y − 8) + xy = 0

or y =
16

2 + x
, x 6= −2,

if that point is interior to L(x), or at an endpoint of L(x) otherwise. Calculations to find
y⋆(x) are displayed for several values of x in this table.

x L(x) bottom unconstrained L(x) top y⋆(x)

y g0(y;x) y = 16/(2 + x) g0(y;x) y g0(y;x)

1.00 0.00 64.0 5.33 (x, y)⊤ infeasible 0.00 64.0 0.00

1.50 0.00 64.0 4.57 (x, y)⊤ infeasible 1.50 43.9 1.50

2.00 0.00 64.0 4.00 (x, y)⊤ infeasible 3.00 34.0 3.00

2.50 0.00 64.0 3.56 35.6 4.50 37.6 3.56

3.00 0.00 64.0 3.20 38.4 4.00 40.0 3.20

3.50 0.00 64.0 2.91 40.7 3.50 41.7 2.91

4.00 0.00 64.0 2.67 42.7 3.00 43.0 2.67

4.50 0.00 64.0 2.46 44.3 2.50 44.3 2.46

5.00 0.33 59.1 2.29 (x, y)⊤ infeasible 2.00 46.0 2.00

5.63 1.38 49.2 2.10 (x, y)⊤ infeasible 1.38 49.2 1.38

The left figure below shows the constraint hyperplanes of the problem, along with dashed
line segments representing L(x) for the tabled values of x and dots (•) at the coordinates
(x, y⋆(x)) given in the table. The line L(1) is the point (1, 0)⊤;L(45

8
) is the point (45

8
, 11

8
)⊤.
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Finding y⋆(x) for additional values of x leads to the picture on the right. The dark edges
are the inducible region y⋆(x) for the inner problem, so named because it is induced
by the inner optimization and thus not necessarily coincident with any constraint contour
(although this inducible region happens to overlap parts of two constraint contours). Once
the inner problem’s inducible region is known, the overall problem of this example can be
solved graphically. The dot in the right picture is the optimal point (x∗, y∗)⊤ ≈ (3.66, 2.83)⊤

and the dashed circle is the optimal contour f0 = f ⋆
0 ≈ 0.852 of the outer objective.

This problem is a [9] cooperative or optimistic Stackelberg game or [19, §1.6] bilevel
program. In general a bilevel program can have nx variables xj , ny variables yj , mO outer
constraints, and mI inner constraints. The constraints can include equalities as well as
inequalities, and the fi and gi need not be linear. The inducible region for this problem
happens to be connected but, as shown by some of the examples in §7, an inducible region
need not be connected. The optimal point for this problem happens to be interior to the
feasible set but, as shown by some of the examples in §7, an optimal point can be in the
boundary. The graphical solution technique is useful only for the simplest of problems.

Bilevel programs arise in many applications, and effective (though computationally de-
manding) methods have been devised for solving those in which all of the functions are
linear [16] [9]. Algorithms have also been proposed for solving bilevel programs in which
some of the functions are nonlinear [14], but the development of methods for those much
more difficult problems remains an active area of research.

2 The MPEC Approach

Some bilevel programs can be solved by replacing the constraint that y solves the inner
problem by the constraint that y solves the Karush-Kuhn-Tucker conditions for the inner
problem. For our example the KKT reformulation looks like this.

min
x,y

f0(x,y) = (x− 13
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f1(x,y) = −x+ 3
2
≤ 0

f2(x,y) = x− 45
8
≤ 0

g1(y;x) = −3x+ y + 3 ≤ 0

g2(y;x) = 5
3
x− y − 8 ≤ 0

g3(y;x) = x+ y − 7 ≤ 0

g4(y;x) = −y ≤ 0

h0(y;x) = 2(y − 8) + xy + u1 − u2 + u3 − u4 = 0

h1(y,u;x) = u1(−3x+ y + 3) = 0

h2(y,u;x) = u2(
5
3
x− y − 8) = 0

h3(y,u;x) = u3(x+ y − 7) = 0

h4(y,u;x) = u4(−y) = 0

ui ≥ 0, i = 1, . . . , 4
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The KKT system for the inner problem includes a stationarity condition only with respect
to y,

h0 =
∂

∂y

(

g0(y; x) +
4
∑

i=1

uigi(y; x)

)

= 0

because x is a constant parameter, not a variable, in the inner optimization. The orthogo-
nality conditions hi = 0 for i ≥ 1 and the nonnegativities ui ≥ 0, taken together, are often
referred to as complementarity constraints, and because of them the KKT reformulation
is referred to as a mathematical program with equilibrium constraints or MPEC.

It is easy to verify that the optimal point for our example (which is given in §7) satisfies
the constraints of this one-level nonlinear program, but it is not easy to solve the KKT
reformulation for (x⋆, y⋆,u⋆). At the optimal point the equalities hi = 0 and the nonnega-
tivities ui ≥ 0 are all tight, but their gradients are not linearly independent. In fact, the
KKT reformulation of a bilevel nonlinear program might [13] [26] not satisfy any constraint
qualification [22] so the KKT theory cannot in general be used a second time to solve the
one-level problem analytically. Because the orthogonality conditions are nonlinear equalities,
the KKT reformulation is also quite challenging for general-purpose numerical optimization
algorithms [3] [14, §2.2].

Of course the KKT reformulation cannot be used at all unless the inner problem has a
constraint qualification at the optimal point of the bilevel program (our example satisfies
Slater’s condition). If the inner problem is nonconvex there might be more than one y that
satisfies its KKT conditions at x⋆, and some might not be even local minima (our inner
problem has a nonconvex objective, but only one point satisfies its KKT conditions and
it is a minimum). If at the optimal point for the bilevel program more inner constraints
are active than there are inner variables, then the KKT multipliers u will not be uniquely
determined. Despite these difficulties, powerful algorithms have been developed [20] [14]
for solving MPECs numerically, including MPECs resulting from the KKT reformulation of
linear bilevel programs.

3 The Substitution Approach

If we could solve the inner problem explicitly for y⋆(x), that formula could be substituted for
y in the outer problem to yield a one-level optimization involving only x. In our example,
if we knew ahead of time that the optimal point would turn out to be in the part of the
inducible region where y = 16/(2+x), we could substitute that formula in the bilevel program
to obtain this one-level reformulation.

min
x

f0(x) = (x− 13
4
)2 +

(

16

2 + x
− 2

)2

subject to







f1(x) = −x+ 3
2
≤ 0

f2(x) = x− 45
8
≤ 0
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Usually the inducible region is not known analytically, but for each trial point xk that is
proposed by some numerical solver of the outer problem, a numerical solver of the inner
problem might compute the corresponding yk = y(xk) in this reformulation.

min
x

f0(x,y(x))

subject to



























fi(x,y(x)) ≤ 0, i = 1. . .mO

gi(x,y(x)) ≤ 0, i = 1. . .mI

y(x) solves

[

min
ȳ

g0(ȳ;x)

subject to gi(ȳ;x) ≤ 0, i = 1. . .mI

]

A practical implementation of this approach must do something sensible if the outer solver
happens to propose an xk at which the inner problem is infeasible or unbounded, or at which
the inner problem has multiple optima. It also requires that we finite-difference function
values to compute derivatives of y(x) for the solver of the outer problem.

4 Computational Experiments

To investigate the utility of the substitution approach I wrote a computer program, referred
to here as bnlezy, that uses the ellipsoid algorithm [19, §24] to solve both the inner problem
and the outer problem. This choice was motivated by the observation in [11] that the
algorithm often finds an optimal point even of a nonconvex problem. A block diagram of
the implementation is shown on the next page.

The ellipsoid algorithm begins by constructing an ellipsoid passing through the corners
of a box defined by upper and lower bounds on the variables. If the center of the ellip-
soid violates an inequality constraint, the algorithm constructs a hyperplane supporting the
constraint contour at that point. If the center of the ellipsoid is feasible, the algorithm
constructs a hyperplane supporting the objective contour at that point. In either case the
ellipsoid is cut in half by the hyperplane, and a next ellipsoid is constructed as the smallest
one containing the half of the old ellipsoid that is on the feasible or optimal side of the cutting
hyperplane. The cutting hyperplane can also be used to update the bounds on the variables,
defining a region of uncertainty within which, if the problem is convex, the minimizing point
must lie. This process can be continued, producing smaller ellipsoids and tighter bounds,
until the largest uncertainty in the optimal value of a variable is small enough. If the matrix
defining the ellipsoid becomes numerically non-positive-definite before then, it is sometimes
possible to restart the algorithm by constructing a new ellipsoid enclosing the current vari-
able bounds. The algorithm keeps track of the feasible ellipsoid center having the lowest
objective value found so far, and this is referred to as the record point [19, §9.6].
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When an inner problem is infeasible I use the final ellipsoid center found by the algorithm
as its solution, on the assumption that this point is the one that is closest to being feasible.
When an inner problem has multiple optima I use the one found by the ellipsoid algorithm,
on the assumption that it is the point (or a point) having the lowest objective value. If these
assumptions are unfounded, or if an inner problem is unbounded, the algorithm fails.

The test suite for my experiments consists of the 30 problems described in §7, many of
which are deviously contrived to exhibit specific pathologies. I ran bnlezy on each problem,
starting from both fair bounds and tight bounds on the variables. The fair bounds are
deduced from the constraints of the problem or determined using the rules described in
[19, §26.2.2] and the tight bounds are very tight around the known optimal point.

In each experiment where a record point (xr,yr)⊤ was found by the outer solver I calcu-
lated the amount by which it differs from the known optimal point (x⋆,y⋆)⊤ according to
this formula.

δr =

nx
∑

j=1

(xr
j − x⋆

j )
2 +

ny
∑

j=1

(yrj − y⋆j )
2

The bounds on the variables place the starting point much farther from the optimal point
in some problems than in others, so I also found the error δ◦ at the starting point of each
problem and used it to calculate the log relative error of a record point from this formula.

∆r = log10 (δ
r/δ◦)

This error measure is zero at the starting point and has negative values at points closer to
the optimal point. If the record point (xr,yr)⊤ is precisely (in floating-point numbers) the
optimal point (x⋆,y⋆), then ∆r = −Inf. If the starting point of a problem is infeasible,
the ellipsoid algorithm might generate iterates farther away from the optimal point than
the starting point was, and if (xr,yr) is one of those iterates then ∆r > 0. When a test
problem has alternate optima, the (x⋆,y⋆) that I used in computing the solution error was
the optimal point closest to the (xr,yr) reported by the algorithm.

The table on the next page reports ∆r for each experiment, or a blank if no record point
was found. The MPEC reformulation of each problem in this test suite is solved in [18] by the
production codes MINOS 5.5 and filterSQP, neither making use of bounds on the variables,
and I have included the log relative errors of those solutions in the table for comparison.
If we consider an algorithm to be successful when it reduces the starting distance from the
optimal point by a factor of 1000 or more, so that ∆r ≤ −3, then we get the bottom row of
the table. By this measure bnlezy, MINOS 5.5, and filterSQP are each successful on only
about 2/3 of the problems in this set.
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problem bnlezy MPEC

number fair tight MINOS filterSQP

1 -24.25 -24.11 -Inf -Inf

2 -25.69 -24.64 -Inf -Inf

3 -15.38 -11.26 -Inf -Inf

4 -16.97 -13.81 -0.84 -11.15

5 -10.33 -4.61 -Inf -Inf

6 0.69 1.93 -Inf -Inf

7 -10.45 -7.07 -Inf -Inf

8 0.00 -12.69 -Inf -Inf

9 -0.92 1.92 -20.92 -32.21

10 -14.45 3.91 -Inf -Inf

11 -31.68 -11.54 -Inf -Inf

12 -11.40 -19.87 -Inf -Inf

13 -7.40 -3.88 -10.40 -10.40

14 -26.28 -22.42 -7.19 -7.19

15 -24.02 -20.76 -11.31 -11.31

16 -11.25 -6.88 1.09 -Inf

17 -18.61 -11.12 -14.06 -14.06

18 -13.94 -8.43 -7.86 -1.05

19 -16.68 2.02 -0.01 -0.01

20 -10.91 2.01 -0.08 -0.08

21 -23.16 -15.19 -12.75 -12.75

22 0.60 1.92 -15.40 -Inf

23 -10.41 -6.57 -Inf -Inf

24 -0.58 1.64 -Inf -Inf

25 -26.91 -20.06 -1.83 -1.83

26 -11.44 -4.02 -12.64 -12.64

27 -16.18 -11.86 -16.40 -30.20

28 -6.21 -3.41 -0.12 -0.12

29 0.10 -23.87 0.20 0.33

30 -0.12 1.74 1.74

% solved 77 73 73 77

5 Discussion

Starting from fair bounds, bnlezy fails on seven of the problems.

• Problem 6 has its starting point at x = 2.75, for which the inner solver returns y⋆(x) ≈ 0
but positive; to minimize the outer objective the algorithm then increases x to its upper
bound. If the starting point is instead to the left of the vertical segment in the inducible
region, bnlezy converges to the optimal point.

• Problem 8 has an infimum at the origin yielding the optimal objective value, and
bnlezy converges to that point even though it is not in the inducible region.

• Problems 9 and 22 have inner problems with multiple optimal points y⋆(x) when x = x⋆,
corresponding to vertical segments of their inducible regions. In Problem 9 the inner
solver returns y⋆(0) = 1 rather than y⋆(0) = 0, and in Problem 22 the inner solver
returns y⋆(0) = −1 rather than y⋆(0) = 0; these alternate optimal solutions of the
inner problems make it impossible for bnlezy to solve the overall optimizations.
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• Problem 24 yields x = x⋆ = 5, y1 = y⋆1 = 4, y2 = 3.3, with an inner objective value
of g0(x

⋆, y⋆) = −4, but at x = 5 the inner problem also has an objective value of
g0(x

⋆, y⋆) = −4 at y2 = y⋆2 = 2, so once again the difficulty is that the inner problem
has multiple optimal solutions at x⋆.

• Problem 29 yields x1 = 25, x2 = 30, y1 = 5, y2 = 10 with an outer objective value of
f0(x

⋆, y⋆) = +5, and problem 30 yields x1 = 0.5, x2 = 0.4, y1 = y2 = y3 = 0 with an
outer objective value of f0(x

⋆, y⋆) = −5.6, but these problems are large enough that it
is hard to diagnose why bnlezy fails.

The substitution approach involves the approximate optimization of nonlinear subprob-
lems and the approximate calculation of gradients, here by central differencing. When the
algorithm works at all, these numerical processes might limit the precision of the solutions
it finds or affect its stability. To investigate these effects I solved all of the problems from
tight bounds containing the optimal point, on the assumption that starting close to an an-
swer makes it more likely to be found. Surprisingly, the summary statistics reported above
suggest that for the problems in this test suite bnlezy is less good at refining a near-optimal
starting point than it is at finding an approximate solution from farther away. However,
because the solution errors ∆r tabulated above are relative to the error δ0 at the starting
point of each problem, it is much more difficult to achieve ∆r ≤ −3 for the tight bounds than
for the fair bounds. Also, the intersection of each problem’s feasible region with its tight
bounds is much smaller than the intersection with its fair bounds, so the starting ellipsoids
are smaller and [11] the ellipsoid algorithm likely does not sample as much of Rnx+ny .

Most of the problems that bnlezy fails to solve for one or both sets of bounds are solved
by either MINOS or filterSQP, and all but one of the problems that give one or the other of
those algorithms trouble are solved by bnlezy for at least one set of bounds. This suggests
that when the MPEC and substitution approaches fail it is for different reasons. It also
appears that problem 30 has some property that makes it difficult for all three algorithms.

These results suggest several questions that might be addressed in a future study of the
substitution approach.

• Would some method other than the ellipsoid algorithm be a better choice for solving
the inner or outer problem?

• Plotting the iterates (xk, yk) generated by the algorithm on top of a two-dimensional
problem’s contour diagram might shed light on why the approach fails when y⋆ is not
unique. Does it suggest some modification that would ensure success?

• If an inner problem solution ȳ is infeasible but a record point is known, a backtracking
linesearch [19, §19.1] might be used to find an x̂ for which the inner problem is feasible
and (x̂,y⋆(x̂))⊤ is a new record point. Does this improve the performance of the
algorithm?

• How does the comparison with the MPEC approach change if the production solvers
are provided with the same bounds on the variables that are used to determine a
starting point for the ellipsoid algorithm?
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7 The Test Problems

This section contains a precise statement of each problem including its source, its known
optimal point(s), and the initial variable bounds that I used. For each problem having
nx + ny = 2 variables, a contour diagram is also provided illustrating the constraints (light
lines), the fair starting point (×), the inducible region (dark lines), the optimal point (•), and
the optimal objective function contour (dashed line). Each contour diagram is accompanied
by an analytic description of the inducible region y⋆(x).

I included (as Problems 1,5,11,12,14,23,24,25,26,29) all of the nonlinear bilevel program-
ming test problems in [15, §9.3], except for their problem 4 (§9.3.5), which contains an
equality constraint in its inner problem, and their problem 7 (§9.3.8), which is identical to
their problem 1 (§9.3.2). To these I added all of the numerical examples in [22] (my Prob-
lems 8,10,18,30) and in [9] (my Problems 2,6,7,9,15,17,19,20,21,22,27), a problem from [4]
(my Problem 28), and a few (my Problems 3,4,13,16) that were made up for this paper. I
chose these problems because they are simple enough to be used for exploring the behavior
of the algorithms in minute detail; it was not my intention in this paper to test the methods
exhaustively on large problems or real applications. Many of these test problems are difficult
despite their low dimensions, on account of the various interesting pathologies they exhibit.

Some test problems appear repeatedly in the literature under different names, often with
small variations, so to make it clear how the earlier problem statements are related to each
other and to mine I have carefully described the origin of each problem in this collection.
The symbol ← indicates that the problem was copied unchanged from the reference cited on
the right of the arrow to the one cited on the left. The symbol  indicates that the problem
given in the reference cited on the left was derived from or is related to the problem given
in the reference cited on the right but is not precisely the same.

Each problem statement includes starting bounds xH , xL, yH , and yL on the variables.
The natural bounds are deduced from the given constraints, but sometimes these cannot
be used to determine a starting point and starting ellipsoid for bnlezy. One or more of the
natural bounds might be ±∞, or their midpoint might place one or more of the variables at
its optimal value, or they or their midpoint might not be exactly representable as floating-
point numbers. I therefore compute the fair bounds based on the natural bounds using the
set procedure [19, §[26.2.2] mentioned above. I made the tight bounds straddle the optimal
values of the variables with small variations in the second significant digit, by adding the
same random vector to both the upper and lower bounds; thus their midpoint is close to but
not exactly at the optimal point.
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The values u⋆
i given in each problem statement are the KKT multipliers corresponding

to the constraints gi of the inner problem and satisfying the KKT conditions for the inner
problem at the optimal point. I found them analytically by writing the KKT conditions for
the inner problem (assuming that x is fixed), substituting the known x⋆ and y⋆, and solving
for u⋆. When the multipliers were not uniquely determined, I chose values in accordance
with the advice given in [20].

Bounds are also given on the KKT multipliers, for possible use in an algorithm that
solves the MPEC reformulation. In all cases I assumed natural bounds on the multipliers of
uH
i = +∞ and uL

i = 0, for which my set procedure yields fair bounds of uL
i = 0 and

uH
i =

{

11× u⋆
i u⋆

i > 0

1 u⋆
i = 0.

The tight bounds I suggest for the KKT multipliers are always uL
i = 0 and

uH
i =

{

2× u⋆
i u⋆

i > 0

1 u⋆
i = 0.

The multiplier values u⋆
i satisfying the inner problem’s KKT conditions at (x⋆,y⋆) are used

only for determining these bounds.

11



Test Problem 1

min
x,y

f0(x,y) = −x− 3y

subject to
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y solves
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


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min
y

g0(y;x) = y

subject to


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

























g1(y;x) = −x+ y − 3 ≤ 0

g2(y;x) = x+ 2y − 12 ≤ 0

g3(y;x) = 4x− y − 12 ≤ 0

g4(y;x) = −x ≤ 0

g5(y;x) = −y ≤ 0





























Starting Bounds

natural fair tight

xH 4 4.0000000000000000E+00 4.1004915073699495E+00

xL 0 0.0000000000000000E+00 3.9004915073699498E+00

yH 5 5.0000000000000000E+00 4.1098691460679877E+00

yL 0 0.0000000000000000E+00 3.9098691460679875E+00

Solution

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5  6  7  8

x

y •

y⋆(x) =

{

0 0 ≤ x ≤ 3

4x− 12 3 ≤ x ≤ 4

x⋆ = 4.0000000000000000E+00

y⋆ = 4.0000000000000000E+00

f⋆
0 = -1.6000000000000000E+01

u⋆
1 = 0.0000000000000000E+00

u⋆
2 = 0.0000000000000000E+00

u⋆
3 = 1.0000000000000000E+00

u⋆
4 = 0.0000000000000000E+00

u⋆
5 = 0.0000000000000000E+00

The multipliers are not uniquely determined, but u3 = 1 + 2u2, so I arbitrarily chose u⋆2 = 0.

Provenance

Floudas [15, §9.2.3]← Liu [21, p166]. The location of the nonnegativity constraint on x is ambiguous
in [15] but stated in [21], resulting in the inducible region shown.
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Test Problem 2

min
x,y

f0(x,y) = x+ 3y

subject to



























































f1(x,y) = −x+ 1 ≤ 0

f2(x,y) = x− 6 ≤ 0

y solves

















min
y

g0(y;x) = −y

subject to



















g1(y;x) = y + x− 8 ≤ 0

g2(y;x) = −4y − x+ 8 ≤ 0

g3(y;x) = 2y + x− 13 ≤ 0

















Starting Bounds

natural fair tight

xH 6 6.0000000000000000E+00 6.1004915073699495E+00

xL 1 1.0000000000000000E+00 5.9004915073699502E+00

yH 6 6.0000000000000000E+00 2.1098691460679877D+00

yL 1/2 5.0000000000000000E-01 1.9098691460679877D+00

Solution

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5  6  7  8

x

y

•

y⋆(x) =

{

1

2
(13 − x) x ≤ 3

8− x x ≥ 3

x⋆ = 6.0000000000000000E+00

y⋆ = 2.0000000000000000E+00

f⋆
0 = 1.2000000000000000E+01

u⋆
1 = 1.0000000000000000E+00

u⋆
2 = 0.0000000000000000E+00

u⋆
3 = 0.0000000000000000E+00

Provenance

Dempe [9, p22]. Dempe uses y for the outer variable and x for the inner, so his notation is opposite
that used here.
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Test Problem 3

min
x,y

f0(x,y) = (x− 6)2 + (y − 5)2

subject to



























































f1(x,y) = −x+ 1 ≤ 0

f2(x,y) = x− 6 ≤ 0

y solves

















min
y

g0(y;x) = −y

subject to



















g1(y;x) = y + x− 8 ≤ 0

g2(y;x) = −4y − x+ 8 ≤ 0

g3(y;x) = 2y + x− 13 ≤ 0

















Starting Bounds

natural fair tight

xH 6 6.0000000000000000E+00 4.6004915073699495E+00

xL 1 1.0000000000000000E+00 4.4004915073699502E+00

yH 6 6.0000000000000000E+00 3.6098691460679877E+00

yL 1/2 5.0000000000000000E-01 3.4098691460679875E+00

Solution

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5  6  7  8

x

y
•

y⋆(x) =

{

1

2
(13− x) 0 ≤ x ≤ 3

8− x 3 ≤ x ≤ 8

x⋆ = 4.5000000000000000E+00

y⋆ = 3.5000000000000000E+00

f⋆
0 = 4.5000000000000000E+00

u⋆
1 = 1.0000000000000000E+00

u⋆
2 = 0.0000000000000000E+00

u⋆
3 = 0.0000000000000000E+00

Provenance

Dempe [9, p22], but with the nonlinear outer objective given above. Dempe uses y for the outer
variable and x for the inner, so his notation is opposite that used here.
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Test Problem 4

min
x,y

f0(x,y) = (x− 6)2 + (y − 5)2

subject to



























































f1(x,y) = −x+ 1 ≤ 0

f2(x,y) = x− 6 ≤ 0

y solves

















min
y

g0(y;x) = −y

subject to



















g1(y;x) = xy − 35
2 ≤ 0

g2(y;x) = −4y − x+ 8 ≤ 0

g3(y;x) = 2y + x− 13 ≤ 0

















Starting Bounds

natural fair tight

xH 6 6.0000000000000000E+00 5.0541082948053804E+00

xL 1 1.0000000000000000E+00 4.8541082948053811E+00

yH 6 6.0000000000000000E+00 3.6426414114535057D+00

yL 1/2 5.0000000000000000E-01 3.4426414114535056E+00

Solution

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5  6  7  8

x

y
•

y⋆(x) =

{

1

2
(13− x) x ≤ 1

2
(13 −

√
29)

1

2
(35/x) x ≥ 1

2
(13 −

√
29)

x⋆ = 4.9536167874354312E+00

y⋆ = 3.5327722653855180E+00

f⋆
0 = 3.2476750527588929E+00

u⋆
1 = 2.0187270087917245E-01

u⋆
2 = 0.0000000000000000E+00

u⋆
3 = 0.0000000000000000E+00

Provenance

Dempe [9, p22], but with the nonlinear f0 and g1 given above. Dempe uses y for the outer variable
and x for the inner, so his notation is opposite that used here.
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Test Problem 5

min
x,y

f0(x,y) = −(4x− 3)y + (2x+ 1)

subject to















































f1(x,y) = −x ≤ 0

f2(x,y) = x− 1 ≤ 0

y solves











min
y

g0(y;x) = −(1− 4x)y − (2x+ 2)

subject to







g1(y;x) = −y ≤ 0

g2(y;x) = y − 1 ≤ 0











Starting Bounds

natural fair tight

xH 1 1.0000000000000000E+00 2.6004915073699497E-01

xL 0 0.0000000000000000E+00 2.4004915073699498E-01

yH 1 1.0000000000000000E+00 1.0986914606798769E-01

yL 0 0.0000000000000000E+00 -9.0130853932012325D-02

Solution

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

x

y •

y⋆(x) =

{

1 x ≤ 1

4

0 x ≥ 1

4

x⋆ = 2.5000000000000000E-01

y⋆ = 0.0000000000000000E+00

f⋆
0 = 1.5000000000000000E+00

u⋆
1 = 0.0000000000000000E+00

u⋆
2 = 0.0000000000000000E+00

Provenance

Floudas [15, §9.3.9] ← Yezza [27, p198] ← Bard [6, §3.1]. The location of the bound constraints on
x is ambiguous in [15] but stated in [27], resulting in the inducible region shown.
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Test Problem 6

min
x,y

f0(x,y) = −xy

subject to























y solves











min
y

g0(y;x) = (x− 1
2)y

subject to







g1(y;x) = y − 1 ≤ 0

g2(y;x) = −y ≤ 0











Starting Bounds

natural fair tight

xH +∞ 5.5000000000000000E+00 5.1004915073699497E-01

xL 0 0.0000000000000000E+00 4.9004915073699501E-01

yH 1 1.0000000000000000E+00 1.1098691460679877E+00

yL 0 0.0000000000000000E+00 9.0986914606798763E-01

We are minimizing −xy and y ≥ 0, so it does not make sense to consider negative values of x and
the natural bound xL is zero by inspection.

Solution

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

x

y •

y⋆(x) =











1 x ≤ 1

2

∈ [0, 1] x = 1

2

0 x ≥ 1

2

x⋆ = 5.0000000000000000E-01

y⋆ = 1.0000000000000000E+00

f⋆
0 = -5.0000000000000000E-01

u⋆
1 = 0.0000000000000000E+00

u⋆
2 = 0.0000000000000000E+00

The starting point is outside the frame of this picture.

Provenance

Dempe [9, p236]. Dempe uses y for the outer variable and x for the inner, so his notation is opposite
that used here.

17



Test Problem 7

min
x,y

f0(x,y) = x2 + y2

subject to















































f1(x,y) = x− 1 ≤ 0

f2(x,y) = −x− 1 ≤ 0

y solves











min
y

g0(y;x) = −xy

subject to







g1(y;x) = y − 1 ≤ 0

g2(y;x) = −y ≤ 0











Starting Bounds

natural fair tight

xH 1 1.2000000000000000E+00 1.0049150736994984E-01

xL −1 -1.0000000000000000E+00 -9.9508492630050169E-02

yH 1 1.0000000000000000E+00 1.0986914606798769E-01

yL 0 0.0000000000000000E+00 -9.0130853932012325E-02

Solution

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

x

y •

y⋆(x) =











0 −1 ≤ x ≤ 0

∈ [0, 1] x = 0

1 0 ≤ x ≤ 1

x⋆ = 0.0000000000000000E+00

y⋆ = 0.0000000000000000E+00

f⋆
0 = 0.0000000000000000E+00

u⋆
1 = 0.0000000000000000E+00

u⋆
2 = 0.0000000000000000E+00

The optimal objective contour for this problem is the single point [x⋆, y⋆]⊤ so it does not show
dashed in the picture.

Provenance

Dempe [9, p121]. Dempe uses y for the outer variable and x for the inner, so his notation is opposite
that used here.
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Test Problem 8

min
x,y

f0(x,y) = (x− 1)2 + y2

subject to



























































f1(x,y) = x− 1 ≤ 0

f2(x,y) = −x− 1 ≤ 0

y solves

















min
y

g0(y;x) = y

subject to



















g1(y;x) = y − 1 ≤ 0

g2(y;x) = −y − 1 ≤ 0

g3(y;x) = xy ≤ 0

















Starting Bounds

natural fair tight

xH 1 1.0000000000000000E+00 1.1004915073699499E+00

xL −1 -1.0000000000000000E+00 9.0049150736994987E-01

yH 1 1.0000000000000000E+00 -8.9013085393201230E-01

yL −1 -1.0000000000000000E+00 -1.0901308539320123E+00

Solution

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

x

y

•

y⋆(x) =

{

0 −1 ≤ x < 0

−1 0 ≤ x ≤ 1

x⋆ = 1.0000000000000000E+00

y⋆ = -1.0000000000000000E+00

f⋆
0 = 1.0000000000000000E+00

u⋆
1 = 0.0000000000000000E+00

u⋆
2 = 1.0000000000000000E+00

u⋆
3 = 0.0000000000000000E+00

The inducible region is disconnected and does not include the origin, so the origin is not an optimal
point for this bilevel program.

Provenance

Luo [22, §1.1.2]. No outer objective is given in [22], so I selected the one given above.
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Test Problem 9

min
x,y

f0(x,y) = (y − x)2 + x2

subject to















































f1(x,y) = x− 20 ≤ 0

f2(x,y) = −x− 20 ≤ 0

y solves











min
y

g0(y;x) = xy

subject to







g1(y;x) = −x− y − 1 ≤ 0

g2(y;x) = x+ y − 1 ≤ 0











Starting Bounds

natural fair tight

xH 20 2.4000000000000000E+01 1.0049150736994984E-01

xL −20 -2.0000000000000000E+01 -9.9508492630050169E-02

yH 21 2.5199999999999999E+01 1.0986914606798769E-01

yL −21 -2.1000000000000000E+01 -9.0130853932012325E-02

Solution

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

x

y •

y⋆(x) =











1− x x ≤ 0

∈ [−1, 1] x = 0

−1− x x ≥ 0

x⋆ = 0.0000000000000000E+00

y⋆ = 0.0000000000000000E+00

f⋆
0 = 0.0000000000000000E+00

u⋆
1 = 0.0000000000000000E+00

u⋆
2 = 0.0000000000000000E+00

For clarity only the central region of the complete contour plot is shown above, so the bounds
constraints on x are outside the frame of the picture. The optimal objective contour for this
problem is the single point [x⋆, y⋆]⊤ so it does not show dashed in the picture.

Provenance

Dempe [9, p226,p233]. Dempe uses y for the outer variable and x for the inner, so his notation is
opposite that used here.
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Test Problem 10

min
x,y

f0(x,y) = (x− 8)2 + (y − 7)2

subject to



















































































f1(x,y) = −x ≤ 0

y solves



































min
y

g0(y;x) = y

subject to























































g1(y;x) = −x− 2y + 10 ≤ 0

g2(y;x) = x− 2y − 6 ≤ 0

g3(y;x) = 2x− y − 21 ≤ 0

g4(y;x) = x+ 2y − 38 ≤ 0

g5(y;x) = −x+ 2y − 18 ≤ 0

g6(y;x) = −y ≤ 0



































Starting Bounds

natural fair tight

xH 16 1.2000000000000000E+01 1.1404915073699499E+01

xL 0 8.0000000000000000E+00 9.4049150736994989E+00

yH 14 3.0000000000000000E+00 2.3098691460679879E+00

yL 1 1.0000000000000000E+00 2.1098691460679877E+00

The fair bounds were chosen to bracket solution 2.

Solution

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  2  4  6  8  10  12  14  16

x

y

•
1

•
2

•3

y⋆(x) =















5− 1

2
x 0 ≤ x ≤ 8

−3 + 1

2
x 8 ≤ x ≤ 12

−21 + 2x 12 ≤ x ≤ 16

x⋆
1 = 5.6000000000000000E+00

y⋆1 = 2.2000000000000000E+00

u⋆
2 = 0.0000000000000000E+00

u⋆
3 = 1.0000000000000000E+00

x⋆
2 = 1.0400000000000000E+01

y⋆2 = 2.2000000000000000E+00

u⋆
1 = 0.0000000000000000E+00

u⋆
3 = 1.0000000000000000E+00

x⋆
3 = 1.2800000000000000E+01

y⋆3 = 4.6000000000000000E+00

u⋆
1 = 0.0000000000000000E+00

u⋆
2 = 5.0000000000000000E-01

f⋆
0 = 2.8800000000000000E+01

There are three alternate optima as shown. For each, the KKT multipliers that are not listed are
zero. The nonzero multipliers are related but not uniquely determined.

Provenance

Luo [22, §1.1.1]. No outer objective is given in [22], so I selected the one given above.
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Test Problem 11

min
x,y

f0(x,y) = (x− 3)2 + (y − 2)2

subject to



























































f1(x,y) = −x ≤ 0

f2(x,y) = x− 8 ≤ 0

y solves

















min
y

g0(y;x) = (y − 5)2

subject to



















g1(y;x) = −2x+ y − 1 ≤ 0

g2(y;x) = x− 2y − 2 ≤ 0

g3(y;x) = x+ 2y − 14 ≤ 0

















Starting Bounds

natural fair tight

xH 8 8.0000000000000000E+00 1.1004915073699499E+00

xL 0 0.0000000000000000E+00 9.0049150736994987E-01

yH 29/5 5.7999999999999998E+00 3.1098691460679877E+00

yL −1 -1.0000000000000000E+00 2.9098691460679875E+00

Solution

-2

 0

 2

 4

 6

 8

-2  0  2  4  6  8

x

y •

y⋆(x) =











2x+ 1 − 4

3
≤ x ≤ 2

5 2 ≤ x ≤ 4

7− 1

2
x 4 ≤ x ≤ 8

x⋆ = 1.0000000000000000E+00

y⋆ = 3.0000000000000000E+00

f⋆
0 = 5.0000000000000000E+00

u⋆
1 = 4.0000000000000000E+00

u⋆
2 = 0.0000000000000000E+00

u⋆
3 = 0.0000000000000000E+00

The central segment of the inducible region shown above is the result of the inner optimization,
rather than being part of a constraint contour.

Provenance

Floudas [15, §9.3.6]  Clark [7, p90]. The source of this problem is given in Floudas [15] as
Clark [7]. However, [7] has g2(y;x) = x− 2y+2 ≤ 0, so the problems are similar but not the same.
The location of the bounds on x is ambiguous in [15] but stated in [7], resulting in the inducible
region shown.
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Test Problem 12

min
x,y

f0(x,y) = (x− 5)2 + (2y + 1)2

subject to



























































f1(x,y) = −x ≤ 0

y solves























min
y

g0(y;x) = (y − 1)2 − 3
2xy

subject to































g1(y;x) = −3x+ y + 3 ≤ 0

g2(y;x) = x− 1
2y − 4 ≤ 0

g3(y;x) = x+ y − 7 ≤ 0

g4(y;x) = −y ≤ 0























Starting Bounds

natural fair tight

xH 5 5.0000000000000000E+00 1.1004915073699499E+00

xL 1 1.0000000000000000E+00 9.0049150736994987E-01

yH 9/2 4.5000000000000000E+00 1.0986914606798769E-01

yL 0 0.0000000000000000E+00 -9.0130853932012325E-02

Solution

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0  2  4  6  8  10

x

y

•

y⋆(x) =















3x− 3 1 ≤ x ≤ 16

9

3

4
x+ 1 16

9
≤ x ≤ 24

7

7− x 24

7
≤ x ≤ 5

x⋆ = 1.0000000000000000E+00

y⋆ = 0.0000000000000000E+00

f⋆
0 = 1.7000000000000000E+01

u⋆
1 = 5.0000000000000000E-01

u⋆
2 = 0.0000000000000000E+00

u⋆
3 = 0.0000000000000000E+00

u⋆
4 = 0.0000000000000000E+00

The central segment of the inducible region shown above is the result of the inner optimization,
rather than being part of a constraint contour. The multipliers are not uniquely determined, but
u4 = u1 −

1
2 , so I arbitrarily chose u⋆1 =

1
2 .

Provenance

Floudas [15, §9.3.2] ← Shimizu [24, p430] ← Bard [3, p18-19]. The location of the nonnegativity
constraints is ambiguous in [15] but stated in [24] and [3], resulting in the inducible region shown.
Also see Floudas [15, §9.3.8] ← Visweswaran [25, p158] ← Bard [3, p18-19].
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Test Problem 13

min
x,y

f0(x,y) = (x− 13
4 )

2 + (y − 2)2

subject to







































































f1(x,y) = −x+ 3
2 ≤ 0

f2(x,y) = x− 45
8 ≤ 0

y solves























min
y

g0(y;x) = (y − 8)2 + 1
2xy

2

subject to































g1(y;x) = −3x+ y + 3 ≤ 0

g2(y;x) =
5
3x− y − 8 ≤ 0

g3(y;x) = x+ y − 7 ≤ 0

g4(y;x) = −y ≤ 0























Starting Bounds

natural fair tight

xH 45/8 5.6250000000000000E+00 3.7626191926881543E+00

xL 3/2 1.5000000000000000E+00 3.5626191926881541E+00

yH 9/2 4.5000000000000000E+00 2.9356620086146439E+00

yL 0 0.0000000000000000E+00 2.7356620086146437E+00

Solution

 0

 1

 2

 3

 4

 5

 1  2  3  4  5  6

x

y
•

×

y⋆(x) =















3x− 3 1 ≤ x ≤
√

91

12
− 1

2

16/(2 + x)
√

91

12
− 1

2
≤ x ≤ 1

2
(5 +

√
17)

7− x 1

2
(5 +

√
17) ≤ x ≤ 45

8

x⋆ = 3.6621276853182042E+00

y⋆ = 2.8257928625466561E+00

f⋆
0 = 8.5178308083874112E-01

u⋆
1 = 0.0000000000000000E+00

u⋆
2 = 0.0000000000000000E+00

u⋆
3 = 0.0000000000000000E+00

u⋆
4 = 0.0000000000000000E+00

The curved portion of the inducible region shown above is the result of the inner optimization,
rather than being a constraint contour, and the optimal point is interior to the feasible region of
the inner problem.

Provenance

This problem, due to Rugenstein, is a modification of one given by Bard [3, p18-19].

24



Test Problem 14

min
x,y

f0(x,y) = x2 + (y − 10)2

subject to











































































f1(x,y) = −x+ y ≤ 0

f2(x,y) = x− 15 ≤ 0

f3(x,y) = −x ≤ 0

y solves

















min
y

g0(y;x) = (x+ 2y − 30)2

subject to



















g1(y;x) = x+ y − 20 ≤ 0

g2(y;x) = −y ≤ 0

g3(y;x) = y − 20 ≤ 0

















Starting Bounds

natural fair tight

xH 15 1.5000000000000000E+01 1.1004915073699499E+01

xL 0 0.0000000000000000E+00 9.0049150736994985E+00

yH 20 1.0000000000000000E+01 1.1098691460679877E+01

yL 0 0.0000000000000000E+00 9.0986914606798770E+00

Solution

 0

 5

 10

 15

 20

 0  5  10  15  20

x

y •

y⋆(x) =

{

15 − 1

2
x 0 ≤ x ≤ 10

20 − x 10 ≤ x ≤ 20

x⋆ = 1.0000000000000000E+01

y⋆ = 1.0000000000000000E+01

f⋆
0 = 1.0000000000000000E+02

u⋆
1 = 0.0000000000000000E+00

u⋆
2 = 0.0000000000000000E+00

u⋆
3 = 0.0000000000000000E+00

The left segment of the inducible region shown above is the result of the inner optimization, rather
than being part of a constraint contour.

Provenance

Floudas [15, §9.3.3] ← Visweswaran [25, p159] ← Shimizu [23, p465]. The location of the bounds
on x is ambiguous in [15] but stated in [25] and [23], resulting in the inducible region shown.
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Test Problem 15

min
x,y

f0(x,y) = x+ 3y

subject to















































































f1(x,y) = −x ≤ 0

f2(x,y) = x− 8 ≤ 0

f3(x,y) = y − 5 ≤ 0

y solves























min
y

g0(y;x) = −y

subject to































g1(y;x) = x+ y − 8 ≤ 0

g2(y;x) = −x− 4y + 8 ≤ 0

g3(y;x) = x+ 2y − 13 ≤ 0

g4(y;x) = −7x+ 2y ≤ 0























Starting Bounds

natural fair tight

xH 8 1.4285714285714288E+00 5.4338248407032830E-01

xL 8/15 5.3333333333333321E-01 5.2338248407032828E-01

yH 5 5.0000000000000000E+00 1.9765358127346544E+00

yL 0 1.6428571428571423E+00 1.7765358127346544E+00

Solution

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5  6  7  8

x

y

•

y⋆(x) =

{

7

2
x 8

15
≤ x ≤ 10

7

8− x 3 ≤ x ≤ 8

x⋆ = 5.3333333333333333E-01

y⋆ = 1.8666666666666667E+00

f⋆
0 = 6.1333333333333333E+00

u⋆
1 = 0.0000000000000000E+00

u⋆
2 = 0.0000000000000000E+00

u⋆
3 = 0.0000000000000000E+00

u⋆
4 = 5.0000000000000000E-01

The outer constraint on y causes the inducible region to be disconnected as shown. The multipliers
are not uniquely determined, but u4 = 2u2 +

1
2 so I arbitrarily chose u⋆2 = 0.

Provenance

Dempe [9, p25]. Dempe uses y for the outer variable and x for the inner, so his notation is opposite
that used here.
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Test Problem 16

min
x,y

f0(x,y) = −x− 3y

subject to



























































f1(x,y) = −x ≤ 0

y solves























min
y

g0(y;x) = −(y −
9
4)

2

subject to































g1(y;x) = −y ≤ 0

g2(y;x) = −x+ y − 3 ≤ 0

g3(y;x) = x+ 2y − 12 ≤ 0

g4(y;x) = 4x− y − 12 ≤ 0























Starting Bounds

natural fair tight

xH 4 4.0000000000000000E+00 2.1004915073699499E+00

xL 0 1.5000000000000000E+00 1.9004915073699498E+00

yH 5 5.0000000000000000E+00 5.1098691460679877E+00

yL 0 4.0000000000000000E+00 4.9098691460679875E+00

Solution

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

x

y

• y⋆(x) =











0 0 ≤ x ≤ 3

2

3 + x 3

2
≤ x ≤ 2

− 1

2
x+ 6 2 ≤ x ≤ 4

x⋆ = 2.0000000000000000E+00

y⋆ = 5.0000000000000000E+00

f⋆
0 = -1.7000000000000000E+01

u⋆
1 = 0.0000000000000000E+00

u⋆
2 = 1.8333333333333333E+00

u⋆
3 = 1.8333333333333333E+00

u⋆
4 = 0.0000000000000000E+00

The inner optimization causes the inducible region to be disconnected as shown. The KKT multi-
pliers are not uniquely determined, but u2 + 2u3 =

11
2 so I arbitrarily chose u⋆2 = u⋆3 =

11
6 .

Provenance

This problem, due to Rugenstein, was contrived for the original version of this paper.
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Test Problem 17

min
x,y

f0(x,y) = (x+ 4)2 + (y − 3.5)2

subject to











y solves





min
y

g0(y;x) = (y − 3)2

subject to
{

g1(y;x) = −x+ y2 ≤ 0





Starting Bounds

natural fair tight

xH 9 9.0000000000000000E+00 1.5216550371274204E-01

xL 0 0.0000000000000000E+00 1.3216550371274202E-01

yH 3 3.0000000000000000E+00 3.8797014099193522E-01

yL 0 0.0000000000000000E+00 3.6797014099193520E-01

Solution

-4

-2

 0

 2

 4

 6

 8

 10

-4 -2  0  2  4  6  8  10

x

y

•

y⋆(x) =

{

+
√
x 0 ≤ x ≤ 9

3 x ≥ 9

x⋆ = 1.4211635297574703E-01

y⋆ = 3.7698322638513644E-01

f⋆
0 = 2.6910361649868895E+01

u⋆ = 6.9579137479584235E+00

Provenance

Dempe [9, p130]. Dempe uses y for the outer variable and x for the inner, so his notation is opposite
that used here.
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Test Problem 18

min
x,y

f0(x,y) = (x− 7
2)

2 + (y + 4)2

subject to











y solves





min
y

g0(y;x) = (y − 3)2

subject to
{

g1(y;x) = −x+ y2 ≤ 0





Starting Bounds

natural fair tight

xH 9 9.0000000000000000E+00 1.0049150736994984E-01

xL 0 0.0000000000000000E+00 -9.9508492630050169E-02

yH 3 3.0000000000000000E+00 1.0986914606798769E-01

yL 0 0.0000000000000000E+00 -9.0130853932012325E-02

Solution

-10

-8

-6

-4

-2

 0

 2

 4

-4 -2  0  2  4  6  8  10

x

y

• y⋆(x) =

{

+
√
x 0 ≤ x ≤ 9

3 x ≥ 9

x⋆ = 0.0000000000000000E+00

y⋆ = 0.0000000000000000E+00

f⋆
0 = 2.8250000000000000E+01

u⋆ = +∞

The KKT conditions for the inner problem with x fixed require u = 3
y − 1.

Provenance

Luo [22, p354] ← Dempe [8, p351]. In [22], x is used (as here) for the outer variable but z is used
for the inner variable. The solution [1.7296, 1.3151]⊤ given in [22] is in the inducible region but
yields f0 ≈ 31.385 and is not optimal. In [8], x is used for the inner variable and y for the outer
(opposite to here).
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Test Problem 19

min
x,y

f0(x,y) = y2

subject to

{

y solves
[

min
y

g0(y;x) = y4 − 2y2 + xy + 1
]

Starting Bounds

natural fair tight

xH 8
√
3/9 1.8475208614068026E+00 1.0049150736994984E-01

xL −8
√
3/9 -1.5396007178390021E+00 -9.9508492630050169D-02

yH 2
√
3/3 1.1547005383792515E+00 1.1098691460679877E+00

yL −2
√
3/3 -1.1547005383792515E+00 9.0986914606798763E-01

The natural bounds stated for x are the values where the locus of points (x, y : dg0(y;x)/dy = 0)
reverses direction (on a Z-shaped segment that is omitted from the graph below because its points
are not minimizers of g0(y;x)). The natural bounds stated for y correspond to those values of x.
The fair bounds were chosen to bracket solution 1.

Solution

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

x

y

•1

•
2

f⋆
0 = 1.0000000000000000E+00

x⋆
1 = 0.0000000000000000E+00

y⋆1 = 1.0000000000000000E+00

x⋆
2 = 0.0000000000000000E+00

y⋆2 = -1.0000000000000000E+00

y⋆(x) =



























+

(

3

√

−27x+3

√
81x2−192

)

2

+12

6
3

√

−27x+3

√
81x2−192

x ≤ 0

−
(

3

√

+27x+3
√

81x2−192

)

2

+12

6
3

√

+27x+3
√

81x2−192

x ≥ 0

There are two optima as shown.

Provenance

Dempe [9, p168]. Dempe uses y for the outer variable and x for the inner, so his notation is opposite
that used here.
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Test Problem 20

min
x,y

f0(x,y) = −(x+ 1)y

subject to

{

y solves
[

min
y

g0(y;x) = y4 − 2y2 + x3y + 1
]

Starting Bounds

natural fair tight

xH 2
√
3/3 1.3856406460551018E+00 1.0049150736994984E-01

xL −2
√
3/3 -1.1547005383792515E+00 -9.9508492630050169E-02

yH 2
√
3/3 1.1547005383792515E+00 1.1098691460679877E-01

yL −2
√
3/3 -1.1547005383792515E+00 9.0986914606798763E-01

The natural bounds stated for x are the values where the locus of points (x, y : dg0(y;x)/dy = 0)
reverses direction (on a Z-shaped segment that is omitted from the graph below because its points
are not minimizers of g0(y;x)). The natural bounds stated for y correspond to those values of x.

Solution

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

x

y

•

f⋆
0 = -1.0000000000000000E+00

x⋆ = 0.0000000000000000E+00

y⋆ = 1.0000000000000000E+00

y⋆(x) =



































+

(

3

√

−27x3+3
√

81x6−192

)

2

+12

6
3

√

−27x3+3
√

81x6−192

x ≤ 0

−
(

3

√

+27x3+3
√

81x6−192

)

2

+12

6
3

√

+27x3+3
√

81x6−192

x ≥ 0

Provenance

Dempe [9, p169]. Dempe uses y for the outer variable and x for the inner, so his notation is opposite
that used here. Dempe specifies an outer objective of −xy, but that yields a problem with infima
rather than a minimizing point. To provide the problem with a minimizing point, f0(x,y) was
changed to the function given above.
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Test Problem 21

min
x,y

f0(x,y) = (x+ 2)2 + (y − 2)2

subject to























y solves











min
y

g0(y;x) = y2

subject to







g1(y;x) = (x− 1)2 − y ≤ 0

g2(y;x) = (x+ 1)2 − y ≤ 0











Starting Bounds

natural fair tight

xH +∞ -5.6746837485242008E-02 -5.5741922411542710E-01

xL −∞ -5.6746837485242203E+00 -5.7741922411542712E-01

yH +∞ 1.7026528167787426E+01 2.5668262522304808E+00

yL 1 1.0000000000000000E+00 2.3668262522304806E+00

Solution

-1

 0

 1

 2

 3

 4

 5

-3 -2 -1  0  1  2  3

x

y
•

y⋆(x) =

{

(x− 1)2 x ≤ 0

(x+ 1)2 x ≥ 0

x⋆ = -5.6746837485242209E-01

y⋆ = 2.4569571061624932E+00

f⋆
0 = 2.2609566539203607E+00

u⋆
1 = 4.9139142123249864E+00

u⋆
2 = 0.0000000000000000E+00

The starting point is outside the frame of this picture.

Provenance

Dempe [9, p196]. Dempe uses y for the outer variable and x for the inner, so his notation is opposite
that used here.
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Test Problem 22

min
x,y

f0(x,y) = −y + x2

subject to















































f1(x,y) = x− 1
2 ≤ 0

f2(x,y) = −x−
1
2 ≤ 0

y solves











min
y

g0(y;x) = x2y

subject to







g1(y;x) = y − 1 ≤ 0

g2(y;x) = −y − 1 ≤ 0











Starting Bounds

natural fair tight

xH 1/2 5.9999999999999998E-01 1.0049150736994984E-01

xL −1/2 -5.0000000000000000E-01 -9.9508492630050169D-02

yH 1 1.0000000000000000E+00 1.1098691460679877E+00

yL −1 -1.0000000000000000E+00 9.0986914606798763E-01

Solution

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

x

y •

y⋆(x) =

{

−1 ∀x
∈ [−1, 1] x = 0

x⋆ = 0.0000000000000000E+00

y⋆ = 1.0000000000000000E+00

f⋆
0 = -1.0000000000000000E+00

u⋆
1 = 0.0000000000000000E+00

u⋆
2 = 0.0000000000000000E+00

Provenance

Dempe [9, p227]. Dempe uses y for the outer variable and x for the inner, so his notation is opposite
that used here.
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Test Problem 23

min
x,y

f0(x,y) = x+ y2

subject to











































f1(x,y) = −x ≤ 0

y solves

















min
y

g0(y;x) = 2y1 + xy2

subject to



















g1(y;x) = x− y1 − y2 ≤ 0

g2(y;x) = −y1 ≤ 0

g3(y;x) = −y2 ≤ 0

















Starting Bounds

natural fair tight

xH +∞ 1.0000000000000000E+00 1.0420317017925204E-01

xL 0 0.0000000000000000E+00 -9.5796829820747970E-02

yH
1

+∞ 1.0000000000000000E+00 1.0986914606798769E-01

yL1 0 0.0000000000000000E+00 -9.0130853932012325E-02

yH
2

+∞ 1.0000000000000000E+00 1.0049150736994984E-01

yL
2

0 0.0000000000000000E+00 -9.9508492630050169E-02

Solution

x⋆ = 0.0000000000000000E+00

y⋆1 = 0.0000000000000000E+00

y⋆2 = 0.0000000000000000E+00

f⋆
0 = 0.0000000000000000E+00

u⋆
1 = 0.0000000000000000E+00

u⋆
2 = 2.0000000000000000E+00

u⋆
3 = 0.0000000000000000E+00

The multipliers are not uniquely determined, but u2 = 2 − u1 and u3 = u1, so I arbitrarily chose
u⋆1 = 0.

Provenance

Floudas [15, §9.3.10]  Bard [4, p373]. The source of this problem is given in Floudas [15] as
Bard [4]. However, [4] has the outer constraints 2 ≤ x ≤ 4 and the inner constraint g1(y;x) =
−x+ y1 + y2 ≥ 4, and it leaves y unconstrained, so the problems are not the same. The location
of the bounds on x is ambiguous in [15] but stated in [4]. The location of the extra bounds on y is
also ambiguous in [15], so I assumed they are inner constraints.
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Test Problem 24

min
x,y

f0(x,y) = −x− 3y1 + 2y2

subject to















































































f1(x,y) = −x ≤ 0

f2(x,y) = x− 8 ≤ 0

y solves





























min
y

g0(y;x) = −y1

subject to











































g1(y;x) = −y1 ≤ 0

g2(y;x) = y1 − 4 ≤ 0

g3(y;x) = −2x+ y1 + 4y2 − 16 ≤ 0

g4(y;x) = 8x+ 3y1 − 2y2 − 48 ≤ 0

g5(y;x) = −2x+ y1 − 3y2 + 12 ≤ 0





























Starting Bounds

natural fair tight

xH 8 8.0000000000000000E+00 5.1042031701792521E+00

xL 0 0.0000000000000000E+00 4.9042031701792519E+00

yH
1

4 4.0000000000000000E+00 4.1098691460679877E+00

yL1 0 0.0000000000000000E+00 3.9098691460679875E+00

yH
2

8 8.0000000000000000E+00 2.1004915073699499E+00

yL
2

−4/3 -1.3333333333333339E+00 1.9004915073699498E+00

Solution

x⋆ = 5.0000000000000000E+00

y⋆1 = 4.0000000000000000E+00

y⋆2 = 2.0000000000000000E+00

f⋆
0 = -1.3000000000000000E+01

u⋆
1 = 0.0000000000000000E+00

u⋆
2 = 1.0000000000000000E+00

u⋆
3 = 0.0000000000000000E+00

u⋆
4 = 0.0000000000000000E+00

u⋆
5 = 0.0000000000000000E+00

Provenance

Floudas [15, §9.2.2]  Clark [7, p89]. The location of the bounds on x is ambiguous in [15] but
given in [7]. In [15], the bounds on y1 are included as explicit constraints in the inner problem, but
bounds on the vector y are also separately given as 0 ≤ y ≤ 4. This constrains y2 as well, whereas
[7] leaves y2 unconstrained. It is ambiguous in [15] whether this added constraint is intended for
the inner or outer problem, but either way it affects the inducible region and makes the problem
different from the one given in [7]. In this case I assumed that the bounds on y2 stated in [15] were
given in error, and used the formulation of [7] in which y2 is unconstrained.
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Test Problem 25

min
x,y

f0(x,y) = −2x1 + x2 +
1
2y1

subject to



































































f1(y;x) = 2x1 + x2 − 2 ≤ 0

f2(x,y) = −x1 ≤ 0

f3(x,y) = −x2 ≤ 0

y solves



















min
y

g0(y;x) = x1 + x2 − 4y1 + y2

subject to























g1(y;x) = −2x1 + y1 − y2 + 5/2 ≤ 0

g2(y;x) = x1 − 3x2 + y2 − 2 ≤ 0

g3(y;x) = −y1 ≤ 0

g4(y;x) = −y2 ≤ 0



















Starting Bounds

natural fair tight

xH
1

1 1.0000000000000000E+00 1.1042031701792521E+00

xL
1 0 0.0000000000000000E+00 9.0420317017925200E-01

xH
2

2 2.0000000000000000E+00 1.0145616531775192E-01

xL
2 0 0.0000000000000000E+00 -9.8543834682248088D-02

yH
1

11/2 5.5000000000000000E+00 5.1098691460679879E-01

yL
1

0 0.0000000000000000E+00 4.9098691460679877E-01

yH2 8 8.0000000000000000E+00 1.1004915073699499E+00

yL
2

1/2 5.0000000000000000E-01 9.0049150736994987E-01

Solution
x⋆
1 = 1.0000000000000000E+00

x⋆
2 = 0.0000000000000000E+00

y⋆1 = 5.0000000000000000E-01

y⋆2 = 1.0000000000000000E+00

f⋆
0 = -1.7500000000000000E+00

u⋆
1 = 4.0000000000000000E+00

u⋆
2 = 3.0000000000000000E+00

u⋆
3 = 0.0000000000000000E+00

u⋆
4 = 0.0000000000000000E+00

Provenance

Floudas [15, §9.2.9] ← Bard [6, p90]. The location of the nonnegativity constraints is ambiguous in
[15] but stated in [6]. In both [15] and [6] the outer constraint I call f1 is an inner constraint given
as x1 + x2 ≤ 2, but according to the author of this problem [5] it should be the outer constraint
shown here; see also [16, p147].
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Test Problem 26

min
x,y

f0(x,y) = x21 − 2x1 + x22 − 2x2 + y21 + y22

subject to















































y solves























min
y

g0(y;x) = (y1 − x1)
2 + (y2 − x2)

2

subject to































g1(y;x) = −y1 +
1
2 ≤ 0

g2(y;x) = −y2 +
1
2 ≤ 0

g3(y;x) = y1 −
3
2 ≤ 0

g4(y;x) = y2 −
3
2 ≤ 0























Starting Bounds

natural fair tight

xH
1

+∞ 5.0000000000000000E+00 5.1042031701792523E-01

xL
1

−∞ 4.9999999999999822E-02 4.9042031701792521E-01

xH
2 +∞ 5.0000000000000000E+00 5.1014561653177515E-01

xL
2

−∞ 4.9999999999999822D-02 4.9014561653177519D-01

yH
1

3/2 1.5000000000000000E+00 5.1098691460679879E-01

yL1 1/2 5.0000000000000000E-01 4.9098691460679877E-01

yH
2

3/2 1.5000000000000000E+00 5.1004915073699497E-01

yL2 1/2 5.0000000000000000E-01 4.9004915073699501E-01

Solution
x⋆
1 = 5.0000000000000000E-01

x⋆
2 = 5.0000000000000000E-01

y⋆1 = 5.0000000000000000E-01

y⋆2 = 5.0000000000000000E-01

f⋆
0 = -1.0000000000000000E+00

u⋆
1 = 0.0000000000000000E+00

u⋆
2 = 0.0000000000000000E+00

u⋆
3 = 0.0000000000000000E+00

u⋆
4 = 0.0000000000000000E+00

Provenance

Floudas [15, §9.3.7] ← Falk [12, p69]  de Silva [10, p58]. Falk and de Silva use y for the
outer variable and x for the inner, so their notation is opposite to that used in Floudas and here.
Falk [12] gives the source of this problem as de Silva [10], but the problem in [10] that most
resembles this one (de Silva’s Test Problem #1) has, after translating into our variable names,
f0(x,y) = x21 − 3x1 + x22 − 3x2 + y21 + y22 so it is not the same as the problem given in [12].
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Test Problem 27

min
x,y

f0(x,y) = −x
2
1y

2
1 + y2

subject to















































f1(x,y) = x21 + x22 − 1 ≤ 0

y solves

















min
y

g0(y;x) = x1y1 + x2y2

subject to



















g1(y;x) = −y1 ≤ 0

g2(y;x) = −y2 ≤ 0

g3(y;x) = −x
2
1 − x22 + y1 + y2 ≤ 0

















Starting Bounds

natural fair tight

xH
1

1 1.0000000000000000E+00 -8.9579682982074793E-01

xL
1

−1 -1.0000000000000000E+00 -1.0957968298207479E+00

xH
2 1 1.2000000000000000E+00 1.0145616531775192E-01

xL
2

−1 -1.0000000000000000E+00 -9.8543834682248088E-02

yH1 2 2.2000000000000002E+00 1.1098691460679877E+00

yL1 0 0.0000000000000000E+00 9.0986914606798763E-01

yH
2

2 2.0000000000000000E+00 1.0049150736994984E-01

yL2 0 0.0000000000000000E+00 -9.9508492630050169E-02

Solution

y⋆1 (x) =











0 x1 ≥ 0, x2 ≥ 0

x2
1
+ x2

2
x1 < 0, x1 ≤ x2

0 x2 < 0, x2 < x1

x⋆
1 = -1.0000000000000000E+00

x⋆
2 = 0.0000000000000000E+00

y⋆1 = 1.0000000000000000E+00

y⋆2 = 0.0000000000000000E+00

y⋆2(x) =











0 x1 ≥ 0, x2 ≥ 0

0 x1 < 0, x1 ≤ x2

x2
1 + x2

2 x2 < 0, x2 < x1

u⋆
1 = 0.0000000000000000E+00

u⋆
2 = 1.0000000000000000E+00

u⋆
3 = 1.0000000000000000E+00

f⋆
0 = -1.0000000000000000E+00

There is also a local minimum at the origin.

Provenance

Dempe [9, p159]. Dempe uses y for the outer variables and x for the inner, so his notation is opposite
that used here. In his notation he gives the optimal value function as ϕ0(y) = −y21(y

2
1 + y22) for

y1 < 0, y1 ≤ y2, but in our notation f0(x,y
⋆(x)) = −x21(x

2
1 + x22)

2. The outer problem given in [9]
is unbounded, so I added the constraint f1(x,y) = x21 + x22 − 1 ≤ 0.
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Test Problem 28

min
x,y

f0(x,y) = −x
2
1 − 3x2 − 4y1 + y22

subject to



































































f1(x,y) = x21 + 2x2 − 4 ≤ 0

f2(x,y) = −x1 ≤ 0

f3(x,y) = −x2 ≤ 0

y solves



















min
y

g0(y;x) = 2x21 + y21 − 5y2

subject to























g1(y;x) = −x
2
1 + 2x1 − x22 + 2y1 − y2 − 3 ≤ 0

g2(y;x) = −x2 − 3y1 + 4y2 + 4 ≤ 0

g3(y;x) = −y1 ≤ 0

g4(y;x) = −y2 ≤ 0



















Starting Bounds

natural fair tight

xH
1

2 2.4000000000000004E+00 1.0420317017925204E-01

xL
1

0 -2.0000000000000000E+00 -9.5796829820747970E-02

xH
2 2 4.4000000000000004E+00 2.1014561653177521E+00

xL
2

0 0.0000000000000000E+00 1.9014561653177520E+00

yH
1

26/5 7.3333333333333339E+00 1.9848691460679877E+00

yL1 2/3 6.6666666666666607E-01 1.7848691460679877E+00

yH
2

17/5 3.3999999999999999E+00 9.1629915073699497E-01

yL
2

0 -1.3999999999999999E+00 8.9629915073699495E-01

A starting point x0 = [0, 2]⊤, y0 = [4, 1]⊤ is given in [3], but that would make x01 = x⋆1 and x02 = x⋆2.
Instead I selected bounds that make x0 6= x⋆.

Solution
x⋆
1 = 0.0000000000000000E+00

x⋆
2 = 2.0000000000000000E+00

y⋆1 = 1.8750000000000000E+00

y⋆2 = 9.0625000000000000E-01

f⋆
0 = -1.2678710937500000E+01

u⋆
1 = 0.0000000000000000E+00

u⋆
2 = 1.2500000000000000E+00

u⋆
3 = 0.0000000000000000E+00

u⋆
4 = 0.0000000000000000E+00

Provenance

Bard [3, p24]  Bard [2, p19]. In [2], where the problem is stated using maximizations, the first
term in the outer objective is 2x21, but in [3], where the problem is stated using minimizations,
the first term in the outer objective is −x21 (as here). Thus the problems are similar but not the
same. The location of the constraints I call f1, f2, and f3 is ambiguous in [2] but specified in [3].
The algorithm described in [3] is said to find the global optimum, but the last iterate listed from
it is x1 = [1.45, 0.95]⊤, y1 = [1.88, 0.64]⊤ which is slightly infeasible for both f1 and g1 and yields
f0 = −12.0629.

39



Test Problem 29

min
x,y

f0(x,y) = 2x1 + 2x2 − 3y1 − 3y2 − 60

subject to











































































































f1(x,y) = x1 + x2 + y1 − 2y2 − 40 ≤ 0

f2(x,y) = −x1 ≤ 0

f3(x,y) = x1 − 50 ≤ 0

f4(x,y) = −x2 ≤ 0

f5(x,y) = x2 − 50 ≤ 0

y solves





























min
y

g0(y;x) = (y1 − x1 + 20)2 + (y2 − x2 + 20)2

subject to











































g1(y;x) = −x1 + 2y1 + 10 ≤ 0

g2(y;x) = −x2 + 2y2 + 10 ≤ 0

g3(y;x) = −y1 − 10 ≤ 0

g4(y;x) = y1 − 20 ≤ 0

g5(y;x) = −y2 − 10 ≤ 0

g6(y;x) = y2 − 20 ≤ 0





























Starting Bounds

natural fair tight

xH
1

50 5.0000000000000000E+01 1.0420317017925204E-01

xL
1 0 0.0000000000000000E+00 -9.5796829820747970E-02

xH
2

50 5.0000000000000000E+01 1.0145616531775192E-01

xL
2

0 0.0000000000000000E+00 -9.8543834682248088D-02

yH1 20 2.0000000000000000E+01 -8.9013085393201230E+00

yL
1

−10 -1.0000000000000000E+01 -1.0901308539320123E+01

yH
2

20 2.0000000000000000E+01 -8.9950849263005015E+00

yL2 −10 -1.0000000000000000E+01 -1.0995084926300501E+01

Solution
x⋆
1 = 0.0000000000000000E+00

x⋆
2 = 0.0000000000000000E+00

y⋆1 = -1.0000000000000000E+01

y⋆2 = -1.0000000000000000E+01

f⋆
0 = 0.0000000000000000E+00

u⋆
1 = 0.0000000000000000E+00

u⋆
2 = 0.0000000000000000E+00

u⋆
3 = 2.0000000000000000E+01

u⋆
4 = 0.0000000000000000E+00

u⋆
5 = 2.0000000000000000E+01

u⋆
6 = 0.0000000000000000E+00

Provenance

Floudas [15, §9.3.4] ← Visweswaran [25, p160] ← Aiyoshi [1, p1114]. In [1] the optimal point is
said to be x1 = 25, x2 = 25, y1 = 5, y2 = 10, but that point is infeasible for constraint g2.
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Test Problem 30

min
x,y

f0(x,y) = −8x1 − 4x2 + 4y1 − 40y2 + 4y3

subject to















































































































f1(x,y) = x1 + 2x2 − y3 − 1.3 ≤ 0

f2(x,y) = −x1 ≤ 0

f3(x,y) = −x2 ≤ 0

y solves



































min
y

g0(y;x) = 2y1 + y2 + 2y3

subject to























































g1(y;x) = −y1 + y2 + y3 − 1 ≤ 0

g2(y;x) = 4x1 − 2y1 + 4y2 − y3 − 2 ≤ 0

g3(y;x) = 4x2 + 4y1 − 2y2 − y3 − 2 ≤ 0

g4(y;x) = −y1 ≤ 0

g5(y;x) = −y2 ≤ 0

g6(y;x) = −y3 ≤ 0



































The upper-level constraint f1 includes the lower-level variable y3, so the inducible region of this
problem might not be connected.

Starting Bounds

natural fair tight

xH
1

3/2 1.5000000000000000E+00 5.1014561653177515E-01

xL
1 0 0.0000000000000000E+00 4.9014561653177519E-01

xH
2 53/60 8.8333333333333333E-01 8.1074552025501290E-01

xL
2

0 0.0000000000000000E+00 7.9074552025501288E-01

yH
1

3/2 1.5000000000000000E+00 1.0986914606798769E-01

yL
1

0 0.0000000000000000E+00 -9.0130853932012325E-02

yH2 3/2 1.5000000000000000E+00 2.1004915073699501E-01

yL
2

0 0.0000000000000000E+00 1.9004915073699499E-01

yH
3

2 2.0000000000000000E+00 8.1042031701792527E-01

yL
3

0 0.0000000000000000E+00 7.9042031701792526E-01

Solution
x⋆
1 = 5.0000000000000000E-01

x⋆
2 = 8.0000000000000000E-01

y⋆1 = 0.0000000000000000E+00

y⋆2 = 2.0000000000000000E-01

y⋆3 = 8.0000000000000000E-01

f⋆
0 = -1.2000000000000000E+01

u⋆
1 = 0.0000000000000000E+00

u⋆
2 = 5.0000000000000000E-01

u⋆
3 = 1.5000000000000000E+00

u⋆
4 = 7.0000000000000000E+00

u⋆
5 = 0.0000000000000000E+00

u⋆
6 = 0.0000000000000000E+00

The multipliers are not uniquely determined, but u2 ≥
1
2 so I chose u2 = 1

2 and that determines
the others.

Provenance

Luo [22, p357] ← Hansen [17, p1204]. In [22] the outer problem is stated as a maximization, and
in [17] both problems are stated as maximizations. In [17] the correct solution is found but it is
incorrectly reported as x⋆ = [0.5, 0.8]⊤, y⋆ = [0.0, 2.0, 0.8]⊤. That point is infeasible for g1 and g2.
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[20] Leyffer S, López-Calva G, Nodedal J. Interior Methods for Mathematical Programs with Com-
plementarity Constraints. Preprint ANL/MCS-P1211-1204, Argonne National Laboratory, Ar-
gonne, IL, 2004.

[21] Liu YH, Hart SM. Characterizing an optimal solution to the linear bilevel programming prob-
lem. European Journal of Operational Research 1994;73(1):164-166.

[22] Luo ZQ, Pang JS, Ralph D. Mathematical Programs with Equilibrium Constraints. New York:
Cambridge University Press, 1996.

[23] Shimizu K, Aiyoshi E. A new computational method for Stackelberg and min-max problems
by use of a penalty method. IEEE Transactions on Automatic Control 1981;AC-26(2):460-466.

[24] Shimizu K, Ishizuka Y, Bard JF. Nondifferentiable and Two-Level Mathematical Program-
ming. Boston: Kluwer Academic Publishers, 1997.

[25] Visweswaran V, Floudas CA, Ierapetritou MG, Pistikopoulos EN. A decomposition-based
global optimization approach for solving bilevel linear and quadratic programs. Pages 139-162
in Floudas CA, Pardalos PM (editors), State of the Art in Global Optimization: Computa-
tional Methods and Applications; Nonconvex Optimization and Its Applications 7. Boston:
Kluwer Academic Publishers, 1996.

[26] Ye, JJ. Nondifferentiable multiplier rules for optimization and bilevel optimization problems.
SIAM Journal on Optimization 2004;15:252-274.

[27] Yezza, A. First-order necessary optimality conditions for general bilevel programming prob-
lems. Journal of Optimization Theory and Applications 1996;89(1):189-219.

43


