Homebrew Hebrew

by Michael Kupferschmid
March 3, 2025

Copyright (© 2024 Michael Kupferschmid. n"a

All rights reserved. Except as permitted by the fair-use provisions in Sections 107 and 108 of the
1976 United States Copyright Act, no part of this document may be stored in a computer, repro-
duced, translated, or transmitted, in any form or by any means, without prior written permission
from the author.

This document, “Homebrew Hebrew” by Michael Kupferschmid, is licensed under cc-BY 4.0.
Anyone who complies with the terms specified in
https://creativecommons.org/licenses/by/4.0/legalcode.txt

may use the work in the ways therein permitted.

1 Introduction

As a student and teacher of Hebrew I often need to prepare documents that contain text in that
alphabet. Fortunately, I was able to download free files defining the redis family of fonts for
IATEX 2¢, and place them in the directory ${HOME}/texmf/fonts/. Using those fonts I have con-
structed a software system that lets me easily typeset letters, words, sentences, paragraphs, pages,
or whole documents consisting of pointed Hebrew text.

2 One Consonant at a Time

Here is a ITEX 2 document that uses one of the redis fonts.

% examplel.tex
\documentclass[12pt]{article}
\font\ivrit=redisi2
\begin{document}

\ivrit{‘}

\end{document}

When it is compiled and the resulting .dvi file is displayed, like this,

unix[1] latex examplel.tex
unix[2] xdvi examplel.dvi

the image is a single page containing the character &. Longer strings can obviously be
constructed one character at a time; \ivrit{m}\ivrit{e}\ivrit{1}\ivrit{y} produces
ni.

This approach is hard to use for several reasons. One must remember the encoding of
the consonants (e.g., y=2J), and no way is provided to typeset vowels (which in Hebrew are
marks above and below the consonants).

3 One Letter at a Time

It would be more convenient to set Hebrew characters by using their names rather than the
\ivrit{e} codes illustrated above, and for teaching it is important to be able to print vowel
points. To accomplish both objectives I wrote a set of IXTEX 2 macros and collected them
in a file named bin/hebrew.tex, which can be \included at the beginning of a document.
The example listed at the top of the next page illustrates how to use hebrew.tex. The line
numbers on the left are present only so that I can refer to them, and are not part of the
document.

The file ${HOME}/bin/hebrew.tex must be \input [3]in the preamble, and \setivrit
must be used [8] to select a font size before any other hebrew.tex command is used. The
recognized font sizes are 7, 8, s8 (slanting), 9, s9, 10, bx10 (thick), s10, 12, s12, 17, 20, 24,
29, and 35.

This IXTEX 2¢ document generates the output boxed at the bottom of the page, which
reproduces page v of The First Hebrew Primer (the Hebrew could instead be translated “In
the name of Heaven. .. He will make peace upon us and upon all Israel...”).

3

© 00N WN -

WWWWWWNNNNNNNNNDNEER B B 2R
AP WNPFPOOONOOONPWNFR,ROOONOO P WNRO

% example2.tex

\documentclass[12pt]{article}

\input{${HOME}/bin/hebrew} % set up to point Hebrew letters
\pagestyle{empty}

\begin{document }

\Large

\setivrit{17} % initialize and set a font size
\centerline{Y
\hebrew{endmem}\chiriq{yod}\patach{mem}\qamats{shin}~%
\hebrew{endmem}\tsere{shin}\sheva{lamed}/,

\vspace{3ex}

\normalsize

\setivrit{12} % reset the font size

\centerline{’
\1ldots~\hebrew{lamed}\tsere{aleph}\qamats{resh}\sheva{sin}\chiriq{yod} %
\hebrew{lamed}\qamats{caf}~%
\hebrew{lamed}\patach{ayin}\sheva{vav}~¥
\hebrew{oovav}\hebrew{nun}\hebrew{yod}\tsere{lamed}\qamats{ayin}~%
\hebrew{endmem}\1lcholam{vav}\hebrew{lamed}\qamats{shin}"¥
\segol{sin}\halfpatach{ayin}\patach{yod}~%
\hebrew{aleph}\hebrew{oovav}\hebrew{hay} \1ldots’

\vspace{3ex}
\centerline{\rule{1in}{0.1pt}}

\vspace{5ex}
\centerline{\large\em for the G--d of Heaven}

\vspace{3ex}
\centerline{\ldots may He make peace for us and for all Israel \ldots}
\end{document}

0Y OY)

- TR 93 Iy oY Yyt aan .

for the G—-d of Heaven

.may He make peace for us and for all Israel ...

name consonant | Each Hebrew letter in Example 2 is again set using a sepa-

01| rate command; thus \hebrew{endmem} sets an ending mem

aleph ™) . : .
bet 1 b 0o | Without any vowel and \chiriq{yod} sets a yod with a chiriq
vet 1 v 03 vowel. i i

gimel A g 04 . Tl}e names, glyphs, and transllteratlor}s of the cogsonants are

dalet T d 05 given in the table on the left. The transliteration c is a hard c,
hay 71 h 06 and sometimes I use ts instead of tz for X or P. In Hebrew some
vav 1 v 07 compound words contain a dash or space. The hash mark * is

ohvav 1 oh 08 used to show that letters have been elided from acronyms such as

oovay 1 oo 09 TNI0. The geresh is used in writing numbers with Hebrew conso-
zayin Tz 10 nants. Later I will explain the numerical codes appearing in the
khet T kh 11 rightmost column. By default the Hebrew consonants are printed
tet U t 12| nbold. To turn bold off use \renewcommand{\hbold} [1]{#1};
yod 7y 13 to turn it back on use \renewcommand{\hbold} [1]{\pmb{#1}}.
endcoph] ch 14 To bold a Hebrew string you can make it the argument of
coph 1 ch 15 \hbf{} (this is translated into renewcommand commands by the
endcaf 7 c 16 hebunt.f program described later).
caf 1 ¢ 17 The names of the vowels are listed below; here [] represents
lamed 5 1 1g| @ny letter (Hebrew or not). Later I will explain the numerical
endmem O m 19 codes. For more about transliterations see §13.
mem N m 20
endnun 1 n 21 ‘ ETEX command glyph sound code ‘
nun] n 22 \hebrew{letter} O 01
samech U s 23 \chiriq{letter} O ih rich 02
ayin V 24 \tsere{letter} O ay play 03
endfay 7] f 25 \segol{letter} [J eh bed 04
fay 3 £ 26 \halfsegol{letter} ~[] eh bed 05
endpay ¥ p 27)
pay @ p 28 \patach{letter} 0 ah mahjong 06
endtsade P tz 29 \halfpatach{letter} O ah mahjong 07

tsade ¥ tz 30 \qamats{letter} O ah mahjong 08

kuf P k 31 \halfqgamats{letter} ~ [J aw awe 09
resh 1 r 32 \awe{letter}] aw awe 10
sh%n v sh 33 \qubbuts{letter} O u truth 1

S;E g S gé \sheva{letter} [J] 12

taf Tt 36 \lcholam{letter} 0 oh pharaoh 13
dash _ 37 \rcholam{letter} =~ [J oh pharaoh 14

space 38 \dagesh{x}{y} [15

hash ™ 39 \meteg{x}{y} [16
geresh 40 \hebspc{L}{R} OO 17

Vowels appear above and below the consonants, so a line of Hebrew takes more vertical
space than a line of English at the same font size. If you will set more than one line, you
might want to adjust the baselineskip with \setlength{\baselineskip}{2.6\hex}. To
include Hebrew in a part command like \section{} you must \protect each vowel name.

4 Movable Points

Each sounding vowel (having code 01-14) in the table above is fixed in its location relative to
the letter on which it appears. The other “vowels” (codes 15-17) each have two arguments
and are coded after the consonant to which they are attached. Each argument is a positive
integer in [0,15]. When the arguments are denoted x and y the first tells how far the glyph
should be from the right edge of the letter and the second tells how far it should be from
the bottom edge of the letter; 0 corresponds to the right edge or the bottom and 15 to the
left edge or the top.

Consonants for which a point makes a difference in the sound (211, 11, 79, 23, 7], 3,
YY) are named separately with and without the point. If you want to set both a dagesh and
a vowel on another consonant, you can use a construct like \patach{gimel}\dagesh{10}{5}
which yields A.

The \hebspc command inserts horizontal space to move the letter after it left (if L > 0)
or right (if R > 0). This is useful for kerning two letters together as shown in the example.

The file ${HOME}/bin/hebrew.tex contains \usepackage commands for the KTEX 2¢
packages ifthen, amsmath, and graphicx, all of which provide functionality that is needed
by some of its commands.

5 Flush Right Text and Punctuation

Hebrew is written from right to left, so lines of text begin at the right margin and if unad-
justed are ragged on the left. To simplify making lines of Hebrew text flush right, hebrew.tex
includes the macro \hebline{}, whose use is illustrated in this example.

% example3.tex
\documentclass[12pt]{article}
\input{${HOME}/bin/hebrew}
\renewcommand{\hbold}[1]{#1}
\pagestyle{empty}
\begin{document}

\setivrit{12}

\hebline{\hebpnk{, } \hebrew{endmem}\segol{coph}\hebrew{yod}\tsere{lamed}\halfpatach{ayin}
\hebrew{endmem}\hebrew{ohvav}\hebrew{lamed}\qamats{shin}}

\hebline{\hebpnk{, }\hebrew{taf}\tsere{resh}\qamats{shin}\patach{hay}
\hebrew{dash}\hebrew{yod}\tsere{coph}\halfpatach{aleph}\sheva{lamed}\patach{mem}}

\hebline{\hebrew{endnun}\hebrew{ohvav}\hebrew{yod}\sheva{lamed}\segol{ayin}
\hebrew{dash}\hebrew{yod}\tsere{coph}\halfpatach{aleph}\sheva{lamed}\patach{mem}}

[y
QWO NOOd WN -

[= S S
OO WN =

\end{document}

This IXTEX 2¢ document produces the output below, in which the first three phrases of the
song Shalom Aleikhem (page 722 in Siddur Sim Shalom or page 375 in the Sacks Koren
Shalem siddur) are right-justified on separate lines.

07y oY
JIT90 -390
MYy - aN9n

To print a right-to-left comma at the end of the first two lines I used the macro \hebpnk{},
which produces the mirror image of its argument.

6 Words and Transliterations

One thing that makes Hebrew hard to learn is that many vowel forms, word-pair forms, and
words having prefixes and suffixes do not appear in printed dictionaries. To facilitate my
study of vocabulary I constructed my own dictionary, which helps me look up and remember
these words. The dictionary is a plain text file that I named Hebrew/millon.dat (1197 is
the Hebrew word for a dictionary). Each line of millon.dat contains a single Hebrew word,
its translation, and its transliteration; the line that contains the word 7191 looks like this:

\hebrew{endnun}\hebrew{ohvav}\hebrew{lamed}\dagesh{7}{5}\chirig{mem} (a) dictionary % millon

First comes the string of five IEX 2 commands that set the letters of the word in right-to-
left order, then the translation, and finally, separated by a percent sign, the transliteration.

It is convenient for the lines of millon.dat to be in arbitrary order, so that they can be
arranged in groups that are related by meaning, or by sound, or by the occasion on which
they were added to the dictionary. To search for words it is better to have a file that is in
alphabetical order, so I wrote a program called hebsort.f (see its man page) to produce from
millon.dat a file Utility/hebrew.hsh that has its lines arranged in alphabetical order of
the transliterations. I call this file the hashed dictionary. Here is the hebrew.hsh line for
11910 along with the lines that immediately precede and follow it (the vertical ellipses indicate
that there are other lines before and after these).

milkhamot 6 02140C12080B011401080124000000000000000000000000 wars, battles

millon 5 02140F750112010801150000000000000000000000000000 (a) dictionary

milmayl 4 02140C120314011200000000000000000000000000000000 mumble

The separate (decimal) numbers 6, 5, and 4 show that these words have respectively 6, 5,
and 4 Hebrew letters. A letter is a consonant with a vowel (in this scheme \hebrew is just a
“vowel” that has no points) or a dagesh, meteg, or space. To conserve memory this file stores
each BKTEX 2z command for the letters of a word as hexadecimal numbers, using the codes
listed in the tables of §3. The hexadecimal numbers or hash codes describing the Hebrew for
millon, which are 02140F75011201080115, translate back to IXTEX 2¢ commands like this:

02,5 = 2 — \chiriq 14,5= 20 — mem \chiriq{mem}
OF s =15 — \dagesh — 75,5 =7,5 = coordinates

01,6= 1 — \hebrew 12,6 = 18 — lamed \hebrew{1a1ned}\dag¢esh{7}{5}
01,6= 1 — \hebrew 08,;= 8 — ohvav \hebrew{ohvav}
01,6= 1 — \hebrew 15,6 = 21 — endnun \hebrew{endnun}

so in this file the Hebrew letters read from left to right (storing the letters in this order
facilitates sorting the dictionary into alephbetical order by the Hebrew, which hebsort.f
can also do). The hebsort.f program uses a subroutine named HB2HSH (see its man page) to
translate a string of BTEX 2 commands into their corresponding hash codes. In the hashed
dictionary a transliteration can be up to 18 characters long, the hash code for the KTEX 2¢
commands that set the Hebrew can represent up to 12 Hebrew letters, and the English
translation can be up to 80 characters long.

7 Finding and Displaying Dictionary Words

To search the hashed dictionary I wrote the program hebcheck.f (see its man page) which
can find a word by either its translation or its transliteration. Below is the beginning of the
list it produced of translations best matching the English word even. Several translations
match exactly while others resemble even in spelling but miss the meaning. The numbers
at the left in the table are the line numbers of the words in hebrew.hsh; below I will
explain how they can be used. The percentage score for each dictionary word indicates how
closely it matches the query. Next comes the transliteration, and after the colon the English
translation. Parenthesized strings in the translations are ignored in finding a match.

unix[1] hebcheck even

4714 100% yashar : straight, even, right

0078 100% ahf : also, though, even, surely; (a) nose; anger
0061 100% afeeloo : even, even though, even if

4020 51% shivah : seven (m)

3978 51% sheva : seven (f)

0063 50% afpa’am : even once

0053 50% af-kee : indeed, even though

1092 44}, esray : ten (f pausal); teen

If you want hebcheck to look for a transliteration, put an equals sign = before and after it.
Below is the beginning of the list the program produced of transliterations best matching
even.

unix[2] hebcheck =even=
1052 71% ehven : (a) stone

3749 67% seen : name of Hebrew letter
2728 67% meen : (a) kind, sort, variety; (a) sex, gender
1110 67% eved : (a) servant

No transliteration matches even exactly, but one comes close. Slight variations are often
possible in how a word is transliterated (see §13) so showing imprecise matches helps to

ensure that you will find the word you are looking for even if your guess at its transliteration
is not exactly right.

To display the Hebrew of a word in the dictionary I wrote the shell script hebshow (see
its man page). It constructs a ITEX 2¢ source file with commands appropriate to display the
word or words that are requested, translates the I¥TEX 2¢ into Postscript, and invokes the
gv program to display it in a window.

unix[3] hebshow =afeeloo= 1052

afeeloo 7177T& even, even though, even if
ehven 1223 (a) stone

Here 1 specified two words to be displayed, the first by its transliteration and the second
by its line number in hebrew.hsh. The hebshow script invokes a program named hebxtr.f
(see its man page) to extract the hash code for a word from hebrew.hsh and translate the
hash code into I¥TEX 2: commands; hebxtr.f in turn invokes the subroutine HSH2HB (see
its man page). My dictionary is always growing, so the word numbers you get when you try
hebshow might differ from those shown above.

8 Embedding Transliterations in Text

By using the KTEX 2¢ commands described in §2-84 it is possible to typeset documents that
include arbitrary Hebrew words. But if you want to include words that are in hebrew.hsh
then it is possible to embed their transliterations in your document rather than spelling out
the words one letter at a time. The example below shows how this can be done.

% example4.heb

\documentclass[12pt]{article}

\input{${HOME}/bin/hebrew}

\renewcommand{\hbold}[1]{#1}

\pagestyle{empty}
\begin{document}

\setivrit{12}

© 00N WN -

10 \noindent The Tall Tale on page 68 of {\em The First Hebrew

11 Primer\/} is entitled\\

12

13 \hebline{\hebpnk{.}<khayyah> <amar> <ahsher> <na’ar>\dagesh{7}{4}\patach{hay}}
14

15 \end{document}

Now the \hebline command includes transliterations for the words V1], "IUN 0, and
170, rather than strings of ITEX 22 commands to spell them out. Here each transhteratlon is
enclosed in <angle> brackets, rather than the equals signs we used in marking transliterations
for hebcheck and hebshow. Angle brackets denote input and output redirection on the Unix
command line so we couldn’t use them to delimit transliterations there, but they cause no
trouble here and using them instead makes the KITEX 2¢ code much easier to read. The first

word of the Hebrew, Va1, is not a dictionary word, but 171 is so I simply prepended
the - 1. Transliterations and KTEX 2¢ commands for setting Hebrew letters can be mixed
freely. I used \hebpnk to set the period at the end of the Hebrew, but because the period is
the same as its mirror image this does not change its appearance.

To translate input files like example4.heb into Postscript, I wrote the shell script hebtex
(see its man page) which invokes the program hebunt.f (see its man page). The hebunt.f
program reads a .heb input file containing transliterations, looks up each transliteration
in hebrew.hsh, and expands the corresponding hash code into BTEX 2 commands. Then
hebtex translates the resulting .tex file into Postscript. The terminal session below shows
how to use hebtex.

unix[4] hebtex example4.heb
unix[5] gv example4.ps

The gv command displays this window.

The Tall Tale on page 68 of The First Hebrew Primer is entitled

0 T TN 1A

9 Typing Paragraphs Left to Right

Typing transliterations is much simpler than typing words letter by letter, but putting the
words in right-to-left order is a nuisance because editors such as vi type from left to right.
Rather than typing Hebrew words in their lexical order of right to left on the page, it is
faster and easier to type them in the temporal order that they are read, as in this example.

% example5.ltr
\documentclass[12pt]{article}
\input{${HOME}/bin/hebrew}
\pagestyle{empty}

\begin{document}
\setivrit{12}
\renewcommand{\hbold}[1]{#1} % turn off bold

© 00N WN -

[y
o

% LTR

\gamats{hay}<av> <shel> <khanah> <kholeh>. <lak’khoo> <oto> <el>
<bayt-hakholim> \sheva{vav}<atsav> <gahdol> <hahyah>

\patach{bet }<bahyit>.

R e
G wWwN =

\sheva{bet}<chol> <yom> <halchah> <khanah> <imm> <imah> <el>
<bayt-hakholim> <1’vakayr> <et> <abba>. <yom> <ekhad>\hebpnk{,}

=
(o))

17 <ca’asher> <halchoo> <el> <bayt-hakholim>\hebpnk{,} <sha’alah>
18 <khanah> ¢‘<ima>\hebpnk{,} <mahdooa> <bara> <eloheem> <et>

19 \patach{hay}<ra> \gamats{bet}<olam>?’’

20 % LTR

21

22 \end{document}

10

The \setivrit{12} command [7] in this example sets the Hebrew type size to 12 points.
Then we find two paragraphs of text, delimited by % LTR flags to indicate
that the Hebrew between them (the first two sentences in the second chapter of Hannah
Senesh) has been entered left-to-right. The blank line produces a paragraph break. The
% LTR flags must be entered exactly as shown, and any Hebrew appearing outside of them is
assumed to be right-to-left.

I wrote the program hebjst.f (see its man page) to read a file that contains left-to-right
text and reset it right-to-left within \hebline commands. In the terminal session below I
use hebjst to read example5.ltr and write example5.heb. This invocation of hebjst tells
that program to assume in right-justifying the left-to-right text that the typesize is 17.00
points rather than the 12 point size used for the Hebrew letters; I did this only so that the
resulting lines would be short enough to conveniently display below. Then I used hebtex to
produce example5.ps for display by gv.
unix[6] cat example5.ltr | hebjst 17.00 > example5.heb

unix[7] hebtex exampleb.heb
unix[8] gv example5.ps

The gv command displays a window like this.

AXY] O"IN0-1m2 %Y TR ANPY 12N T30 TY 2N
I0ad 770 91Ta

Ty P2 O9IND- I 983 el Oy 730 71270 017 933
NINY OIN0-TT2 3 1370 TYRE TN 077 .8AN
“YO7IvE VIO IR OO &)1 YATD et 10

10 Constructing a Vocabulary List

You can list the unique transliterations contained in a document, with their English equiv-
alents and optionally sorted, by using heblist.f (see its man page).

unix[9] cat example5.heb | heblist > list.heb
found 38 transliterations of which 30 are unique

Now list.heb contains IXTEX 2 commands for setting a table whose first column contains
the transliterations in the order they were encountered and whose second column contains the
English translations of the corresponding Hebrew words. This source text can be included
in a WTEX 22 document (such as the one whose vocabulary is listed).

11

11 Constructing a Lexicon

In Hebrew stories printed for beginners, one often finds that a few of the words have been
footnoted on first appearance to give their English meanings. Unfortunately, when I read
such a story I often find that the footnoted words are familiar while no translation is provided
for others that are new. To make it easier for me to learn vocabulary by reading stories,
[wrote a program called heblex.f (see its man page) to construct a list of all the distinct
words in a page of text along with their meanings as given in Hebrew/millon.dat. The
program formats the text of a story on right-hand pages with the lexicon for all of the words
in that page on the facing left-hand page. That way, when I get stuck on a word I can easily
find its meaning and then continue reading the Hebrew.

I wrote heblex to process the individual chapter files of a story book, so it expects that its
input will not contain an \end{document} command. The Unix session below begins [10]
by copying exampleb5.heb to example6.raw but omitting its \end{document} command.
Then [11] it uses heblex to produce the file example6.heb containing the Hebrew text
and a lexicon of its words. Because this is output from heblex it does not end in an
\end{document} command, so [12] one must be appended. Then hebunt can be used [13]
to expand the transliterations and [14] latex to translate the result to a dvi file. Finally
dvips can produce [15] examplefa.ps containing the lexicon and [16] example6b.ps
containing the Hebrew text. It is these files that are printed on the facing pages 14 and 15
of this document (page 13 is a right-hand page so it is blank).

unix[10] cat example5.heb | sed -e"/end{document}/d" > example6.raw
unix[11] heblex 1=example6.raw 3=/dev/null 4=temp 2>&1 > example6.heb
unix[12] echo "\end{document}" >> example6.heb

unix[13] cat example6.heb | hebunt 2>&1 > example6.tex

unix[14] latex example6.tex

unix[15] dvips -p=1 -1=1 -o example6a.ps example6.dvi

unix[16] dvips -p=2 -1=2 -o example6b.ps example6.dvi

Normally heblex is used in a make file to manage the assembly of a book from chapters, and
then many of the complications required for this demonstration do not arise.

The first occurrence of each lexicon word is printed in boldface to show that it is new.
Because this example has only one page, all of its words are new so all of them are printed
in bold.

12

13

1
7%
N
N
D)
Nk
B
oinn-ma
Xy
1T
i)
ma
p

o
(EpN
oy
N
7917
e
AN
TR
T
{m pry|
MY
i
Yim
11
O3y
V]
np)hY

father; (month of) Av

of

Hannah

patient, sick man; sick (adj)
they took

him; same m

to

(the) hospital

sadness

big, great (ms)

he was

(a) house

all, everything, whole (n)
(a) day

she walked, went

with; while; beside

her mother

to visit

direct object marker; with
daddy

one (m)

when, just as

they walked, went

she asked, questioned
mommy

why

he created

God (of nature); judges
bad, evil (ms)

the universe; eternity

14

21XV 0"9IN0-Ma %Y IR NPT 12N T30 9 AN

I3 7 3TTA

Mg P27 0"IN0-ma 9 e 0Y 730 1290 0 933
NINY OIN0-TT2 32 13770 1Y TN 077 .8AN

“I07IVA YOO TR O N1 YD RO 0

15

12 Printing Flashcards

Another way to learn vocabulary words is by using flashcards. A flashcard has a Hebrew
word (or words) printed on one side and the translation (or translations) on the other side.
To use a flashcard you look at one side and try to recall the other, then turn the card over to
check. If you do this many times eventually you will remember the English that goes along
with the Hebrew and the Hebrew that goes along with the English.

Flashcards are not hard to make by hand, and some learning does occur in the process
of doing that, but it is much easier and almost as good to generate them automatically by
using the program flashcards.f (see its man page). It reads an input file of transliterations
and generates a .heb file that can be processed by hebtex. When the resulting .ps file is
printed 2-sided each page contains three 3 x 5 flashcards each with a Hebrew word or words
on one side and the corresponding English translations on the other. The cards can be cut
out for convenient handling for review as described above. Many printers will accommodate
card stock or paper heavy enough to serve that purpose, but you might find that flashcards
printed on ordinary 20-pound paper work well enough.

The terminal session below shows how to use the program. The 1pr option you need for
two-sided printing depends on what kind of printer you have.

unix[17] more in.flash

<shalom>

<abba> <ima>

unix[18] cat in.flash | flashcards > out.heb
unix[19] hebtex out.heb

unix[20] 1lpr -o Duplex=DuplexTumble out.ps

I have printed the result out.ps on the following two pages back-to-back, so that you can
cut out the three flashcards (the bottom one is blank). If you imagine that the guide number
in the upper left corner of each card has an unshown leading decimal point, then filing the
cards in the order of those decimal fractions will put them into alephbetical order. In the
example the top card has guide number 0.33180819 while the middle one has guide number
0.010201012001, and filing them in the order of those numbers would put them in alephbetical
order.

If you want to make flashcards for all of the transliterations in a document you can use
heblist to produce a vocabulary list and use that as the input to flashcards.

16

33180819

017w

010201012001

NN
MDY

17

peace; hello; good bye

daddy

momimy

18

13 About the Transliterations

The transliteration of a Hebrew word is an English word whose pronunciation approximates
the sound of the Hebrew.

13.1 Essential Properties

To be useful in the typesetting system described here, a transliteration must have these
properties.

e [t is composed of letters and punctuation that can be typed on a standard American
keyboard. This rules out the use of the backwards letters and other linguistic symbols
found in some Hebrew grammar texts. I have used only letters of the alphabet, the
apostrophe ’, and the dash -.

e [t has an unambiguous English pronunciation that closely approximates the Hebrew.
Often a Roman letter can be sounded in several different ways, so it is sometimes
difficult to produce a transliteration that can be pronounced in only one way.

e [t is short enough for convenience and no longer than 18 characters. Frequently this
objective conflicts with the goal of making the pronunciation unambiguous.

e [t must be unique in the dictionary millon.dat, so homonyms must have different
transliterations.

13.2 Construction

To construct a transliteration for a Hebrew word I begin by concatenating in left-to-right
order the transliterations of its consonants and vowels in the order they are voiced right-to-
left. For example, the word D)2 is transliterated like this:

2 a0 0 n _ il
b > h ay m ah
The transliterations of the Hebrew consonants and vowels are given on page 6 of Voicing
Hebrew.
Then I adjust the result, if necessary, to conform to the conventions given below. Those

pertaining to the letter yod correspond to the rules for pronouncing it given in §3.5 of Voicing
Hebrew.

e If a word ends in 11, its transliteration ends with h.

e If a Hebrew consonant is implicitly doubled by having a dagesh, its transliteration is
repeated.

e If a consonant carries a sounded sheva, its transliteration is the transliteration of the
consonant followed by an apostrophe .

19

e If a word contains adjacent sounds whose pronunciation requires their separation by
a pause but no sheva is present, the pause is denoted by an apostrophe; for example,
ﬁtggj has adjacent ah sounds that are shown to be separate in the transliteration
shah’ahl.

e When a yod has a vowel, it is transliterated as y followed by the transliteration of the
vowel.

e When a yod follows a consonant with a chiriq, it is transliterated as ee.
e When a yod has no vowel and is not the last letter of a word, it has no transliteration.

e When a yod has no vowel and is the last letter of a word, its transliteration depends
on the pointing of the consonant that precedes it.

diphthong transliteration sounded as in

'O or g ai eye
0 or 'O ahyy eye
q aye pray

Some of the transliterations in Hebrew/millon.dat are still being brought into conformity
with these rules.

13.3 Contraction

Often the transliteration that results from following the procedure described in §13.2 includes
non-final occurrences of the letter h that can be removed without making the pronunciation
ambiguous, and then I often use the shorter form; for example, the word Tlgjt}Z is transliter-
ated according to the rules above as ihshahh, but ishah sounds the same. This is a special
case of the first more general convention described below.

e In a transliteration, a is to be sounded as ah, representing O or O, unless it is followed
by a letter that makes it sound different from ah.

e In a transliteration, i is to be sounded as ih, representing 0J, unless it is followed by a
letter that makes it sound different from ih.

e In a transliteration, e is to be sounded as eh, representing {J, unless it is followed by a
letter that makes it sound different from eh.

I am less likely to elide an h that is rendered superfluous by the above policy if doing so yields
a transliteration in which some sequence of letters is then likely to be mispronounced because
it is an English word. For example, the Hebrew word for blood, O could be transliterated
dam with the pronunciation of the a defaulting to ah. But then it looks like the English
word dam, in which the middle letter has a sound that is actually not in Hebrew at all, so
to make the correct voicing of the word unambiguous I transliterate it dahm. In some cases
you might have to try several spellings before finding the transliteration I chose.

20

13.4 Homonyms

To distinguish in millon.dat between words that sound alike, I vary their identical translit-
erations in one or more of the following ways.

e Include in one an h that is elided in the others.

e Double the final letter. For example, UHI1 has the transliteration tafas while PJEIJTTI has
the transliteration tafass. The final letter of a Hebrew word is almost never implicitly
doubled by the addition of a dagesh, so when the final letter of a transliteration is
repeated I have almost always done that to make it unique.

e Transliterate a tsere [J as aey rather than ay. This is necessary only rarely.

13.5 Exceptions

For a few words I have departed from the policy outlined above in order to make a translit-
eration resemble the English word that is conventionally used; examples are chumash for
WIN] (rather than khumash), yisrael for 3377 (rather than yisrah’ayl), and yhvh for
the Tetragrammaton.)

13.6 Upper Case Letters

Hebrew has no upper or lower case, so I use lower case for transliterations. Words whose
English translations are capitalized because they are proper nouns or deserving of honor
thus have transliterations that are all lower case, and by this I mean no disrespect. I have
considered capitalizing the accented syllable in a transliteration whenever the stress is not
on the last syllable, or varying the capitalization to distinguish homonyms, but so far I
have done neither in Hebrew/millon.dat. The dictionary file contains a few Yiddish and
Aramaic words; if such a word differs from the Hebrew word having the same meaning,
its transliteration ends in Y or A and this letter is not to be sounded in pronouncing the
transliteration. The Hebrew consonants are included for use as numbers, each transliterated
by its conventional name (as given on page 6 of Voicing Hebrew) suffixed by the letter N. The
only other transliteration in the file containing an upper-case letter is HoH, which abbreviates
the Hebrew phrase l:l"E_ijEI EJTD, The Holy of Holies.

21

