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Introduction

Often there is an approximately linear relationship between two measured quantities x and y,
and we want to find the model function ŷ(x) = β1+β2x that best fits the data (xk, yk), where
k = 1 . . .m. As discussed in [1, §2.3] and [2, §8.6.4], one way of doing this is by finding β1

and β2 to minimize the sum of the absolute values of the deviations dk = yk− ŷ(xk) between
the model function and the observations. This way of determining the model function is
called least-absolute-value regression. It might be that some of the data points are
more certainly known or more important than others, and if so they should be weighted
more heavily, so we will associate with each data point (xk, yk) a weight wk and

minimize
β1,β2

m
∑

k=1

wk|dk|.

Linear Programming Formulation

To eliminate the absolute value, we can let dk = uk − vk, where uk ≥ 0, vk ≥ 0, and one or
the other (depending on the sign of dk) is zero. Then we can write |dk| = uk + vk, and the
optimization problem becomes the linear program

minimize
u,v,β1,β2

m
∑

k=1

wk(uk + vk)

subject to uk − vk = yk − (β1 + β2xk)

u ≥ 0,v ≥ 0

β1, β2 free

To get standard form we can write each free variable as the difference between two nonneg-
ative variables so that β1 = β+

1 − p and β2 = β+

2 − p, where β+

1 ≥ 0, β+

2 ≥ 0, and p ≥ 0.
Then the linear program becomes

minimize
u,v,β+

1
,β+

2
,p

w1u1 + w1v1 + · · ·+ wmum + wmvm

subject to β+

1 + x1β
+

2 − (1 + x1)p+ u1 − v1 = y1

β+

1 + x2β
+

2 − (1 + x2)p+ u2 − v2 = y2
...

β+

1 + xmβ
+

2 − (1 + xm)p+ um − vm = ym

β+

1 ≥ 0, β+

2 ≥ 0, p ≥ 0,u ≥ 0,v ≥ 0

This linear program has the tableau shown at the top of the next page.
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β+

1 β+

2 p u1 v1 u2 v2 · · · um vm
0 0 0 0 w1 w1 w2 w2 · · · wm wm

y1 1 x1 −(1 + x1) 1 −1 0 0 0 0
y2 1 x2 −(1 + x2) 0 0 1 −1 0 0
...

...
...

...
. . .

ym 1 xm −(1 + xm) 0 0 0 0 1 −1

Behavior of the Regression Model

It is instructive to consider some small examples of least-absolute-value regression in action.
First suppose that the data points to be fitted with a straight line are (0,1), (1,3), and (2,5)
and that they are all weighted the same. Then this is the linear program.

β+

1 β+

2 p u1 v1 u2 v2 u3 v3
0 0 0 0 1 1 1 1 1 1
1 1 0 −1 1 −1 0 0 0 0
3 1 1 −2 0 0 1 −1 0 0
5 1 2 −3 0 0 0 0 1 −1

Solving by the simplex method yields this unique optimal-form tableau.

β+

1 β+

2 p u1 v1 u2 v2 u3 v3

0 0 0 0 1

2
1 1

2
2 0 1

2
1 1

2

1 1 0 −1 1 −1 0 0 0 0

2 0 1 −1 − 1

2

1

2
0 0 1

2
− 1

2

0 0 0 0 1

2
− 1

2
−1 1 1

2
− 1

2

Thus β1 = 1 and β2 = 2, so the model function is ŷ(x) = 1+2x, which fits the data precisely
(the objective value is zero). Next consider what happens when the final point is moved off
that line, to (2,8). Here are the new initial and final tableaus.

β+

1 β+

2 p u1 v1 u2 v2 u3 v3
0 0 0 0 1 1 1 1 1 1
1 1 0 −1 1 −1 0 0 0 0
3 1 1 −2 0 0 1 −1 0 0
8 1 2 −3 0 0 0 0 1 −1

β+

1 β+

2 p u1 v1 u2 v2 u3 v3

−1 1

2
0 0 0 1

2
1 1

2
2 0 1

2
1 1

2

1 1 0 −1 1 −1 0 0 0 0

3 1

2
0 1 −1 − 1

2

1

2
0 0 1

2
− 1

2

1 1

2
0 0 0 1

2
− 1

2
−1 1 1

2
− 1

2

4



The unique optimal solution now gives ŷ(x) = 1+3.5x, which goes through the first and third
points but completely ignores the second (this is in contrast to the least-squares regression
line, which is ȳ(x) = 0.5 + 3.5x and does not pass through any of the data points).
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Here ŷ(1) = 4.5 so d2 = 1.5 and that is the optimal objective value. Next suppose we add
the point (3,7).
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Now three of the data points lie on the regression line but the fourth, which we can now
call an “outlier,” is ignored. What is remarkable about this result is that the regression line
remains unchanged no matter how far away we move the outlier. Here is the picture with
the third point moved to (3,18). The vertical scale has changed to accommodate the moved
point.
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Because of the linearity of the regression line and the fact that we are minimizing the sum
of the distances from it to the points, there is no way to adjust the line that results in
a lower error, no matter how far away the outlier is (this is analogous to the median of
several numbers remaining unchanged as the highest or lowest value is made more extreme).
Decreasing the deviation of the outlier always increases the sum of the other deviations
by more. It is this property that makes least-absolute-value regression useful for rejecting
outliers.
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Comparison to Least-Squares Regression

Now consider the two larger datasets given below. The left table is from the Westwood
Company example in [3, §3], and the right table is the same data with a digit inversion in
one of the observations (marked ⋆). This typographical error introduces a very pronounced
outlier, which is off the vertical scale in the rightmost graph.
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ȳ(x) = 10 + 2x

ŷ(x) = 8.4 + 2.02x
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ȳ(x) = −124.5 + 6.076x

ŷ(x) = 10 + 2x

Except for the outlier, each graph shows the tabular data as points and both the least-
squares (ȳ) and least-absolute-values (ŷ) regression lines. In the left graph, where there are
no significant outliers, the model functions are similar and both regression lines provide a
good fit to the data. The outlier in the right dataset pulls the least-squares regression line far
from the remainder of the data, while the least-absolute-values regression line is affected very
little (in fact, the outlier changes the set of data points that matter to the linear program
in a way that just happens to yield the same model function that least-squares regression
found for the original data).

Trustworthiness of Regression Models

Typically the values of yk include some random errors resulting from limits on the precision of
the measurements or our neglect of factors other than x that also slightly influence the value
of y. Because of these errors, our linear model function will seldom pass exactly through all
of the data points. How confident can we be in the predictive value of the regression, if it
does not match the data perfectly? If more data or different measurements were used, we
would probably get slightly different values for β1 and β2. Just how different might they be?

Often it is reasonable to assume that the errors in the measured values of the yk are
normally distributed with zero mean. In that case their variance can be estimated, using
the data and the regression function, as

σ̂2 =
1

m− 2

m
∑

k=1

(yk − (β1 + β2xk))
2
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In the case of least-squares regression, β1 and β2 are functions of the data determined by
these formulas.

β2 =

∑

xkyk −
1

m
(
∑

xk)(
∑

yk)
∑

x2
k −

1

m
(
∑

xk)2

β1 =
1

m

(

∑

yk − β2

∑

xk

)

Assuming that the errors in the yk are normally distributed with mean zero and variance σ̂2,
techniques of mathematical statistics can be used to derive the probability distributions of
these functions of the random variable y. It is then possible to make probability statements
about the regression coefficients β1 and β2, such as giving 90% confidence intervals on their
values.

In the case of least-absolute-values regression β1 and β2 are also functions of the data, but
those functions are not given by formulas. Instead, the relationship between the random vari-
able y and the regression coefficients is determined by the solution of a linear programming
problem. The techniques of mathematical statistics that work so well and easily in the case
of least-squares regression fail us here. Instead, we must resort to simulation experiments
and determine the probability distributions of β1 and β2 experimentally.

Simulation Experiments

To determine the probability distributions of β1 and β2 experimentally, I wrote simulation.f,
which peturbs the yk in the Westwood data by adding pseudorandom noise uniformly dis-
tributed on the interval [−r, r], where r is the noise amplitude. For each of 900 vectors
y perturbed in this way, the program computes the least-squares and least-absolute-values
regression, and saves the resulting values of β2 (the slope of the regression line). Then it
prints histograms (sample probability densities) of the two β2 datasets. Some results are
shown below and on the next page.
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When the noise amplitude is zero, all of the regressions yield the same slope, 2.00 for least
squares and 2.02 for least absolute values as we found above. As the noise in the data
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increases, both least-squares and least-absolute-values regression yield β2 probability distri-
butions that increase in variance. The least-squares density becomes skewed, and at r = 10 it
is also biased (in that its peak occurs in the wrong histogram bin). The least-absolute-values
density remains unbiased and roughly symmetric, but it spreads out more.
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Open Questions

The conventional analysis of least-squares regression assumes that measurement errors in
the yk are normally distributed, and this yields variations in the β2 estimates that follow
Student’s t distribution, but here we have simulated uniformly distributed measurement
errors. How should the β2 that we find using least-squares regression be distributed then,
according to mathematical statistics? It would be reassuring to find that the densities on
the left above match those predictions.
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It’s not possible to derive in closed form the probability distribution of β2 when it is
estimated using least-absolute-values regression, but the bottom right histogram above is
suggestive of a double-exponential density. It would be interesting to see how that changes
if the errors in the yk are assumed to be normally, rather than uniformly, distributed.

These results are based on a single stream of pseudorandom numbers, so to confirm the
particular observations made above it would be prudent to repeat the calculations using some
different starting seeds. If the double-exponential appearance of the least-absolute-values β2

density persists, other and larger problems could be studied in search of an empirical analytic
model for these uncertainties.

When r = 10 some of the least-absolute-value β2 estimates are quite different from the
estimate of 2.02 we get when r = 0. What does the linear program look like in those cases?
Is the optimal basic sequence different from what it is when r = 0? If not, does making
the noise amplitude even bigger cause a change in the basic sequence, and what does the
histogram of β2 values look like then? Letting r = 50 yields the following histograms.
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These histograms display the same range of β2 values that we used before, but now some
observations fall outside that range so not all 30 of the histogram dots show. Now the
right-hand density looks quite different from the one for r = 10, having for one thing a
second hump around β2 = 5. Does that correspond to a different optimal basis in the linear
program? Errors of ±50 in data values that are barely bigger than that would probably
make the data useless in practice, but it is interesting anyway to ask how changes in the
optimal basic sequence of the linear program affect the β2 density plot.
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