
PHASE0(3M) PHASE0(3M)

NAME

PHASE0 − Pivot in a linear programming tableau to get identity columns with zero costs.

That’s a zero in the name of the routine.

SYNOPSIS

CALL PHASE0(T,LDT,BASIS,MP,N,ROWS,MR, RC)

T(LDT,*) is the REAL*8 input LP tableau

LDT is the INTEGER*4 leading dimension of T

BASIS(N) is the INTEGER*4 output vector of basic column row indices, 0 for nonbasic

MP is the INTEGER*4 total number of rows in the LP including the objective

N is the INTEGER*4 number of variables in the LP

RO WS(MR) is the INTEGER*4 vector of row indices in the problem

MR is the INTEGER*4 input number of rows in use including the objective

RC is the INTEGER*4 return code; 0 => ok, 1 => infeasible form 1

DESCRIPTION

The routine assumes there is no basis to begin with. It examines the constraint rows in order going down

the tableau. For each row it finds the leftmost nonzero entry and calls PIVOT to piv ot on it. Each pivot

updates T and BASIS. If all of the entries in the row are smaller in absolute value than 1.D-06 but the cor-

responding constant column entry is not, the routine considers the problem to be in infeasible form 1 and

returns with RC=1. If every entry in a row is smaller in absolute value than 1.D-06, it considers the row to

be all zeros and removes it from the problem.

DIAGNOSTICS

On output these are the possible RC values:

0 all went well

1 the problem is in infeasible form 1

LINKAGE

gfortran source.f −L${HOME}/lib −lmisc

AUTHOR

Michael Kupferschmid

03 Jun 03 1



PHASE0(3M) PHASE0(3M)

EXAMPLE

PARAMETER(LDT=3,MP=3,N=5,MR=3)

INTEGER*4 ROWS(MR)/1,2,3/,BASIS(5),RC

REAL*8 T(LDT,1+N)/0.D0, 6.D0, 5.D0,

; 1.D0, 1.D0,-1.D0,

; 0.D0, 0.D0, 1.D0,

; 2.D0,-1.D0, 0.D0,

; -1.D0,-3.D0, 3.D0,

; 4.D0, 1.D0,-3.D0/

DO 1 I=1,MP

WRITE(6,901) (T(I,J),J=1,1+N)

901 FORMAT(6(1X,F4.1))

1 CONTINUE

CALL PHASE0(T,LDT,BASIS,MP,N,ROWS,MR, RC)

WRITE(6,900)

900 FORMAT(’ ’)

DO 2 I=1,MP

WRITE(6,901) (T(I,J),J=1,1+N)

2 CONTINUE

STOP

END

This example (which is from [1] Exercise 2.10.68) produced the following output:

unix[1] a.out

0.0 1.0 0.0 2.0 -1.0 4.0

6.0 1.0 0.0 -1.0 -3.0 1.0

5.0 -1.0 1.0 0.0 3.0 -3.0

-6.0 0.0 0.0 3.0 2.0 3.0

6.0 1.0 0.0 -1.0 -3.0 1.0

11.0 0.0 1.0 -1.0 0.0 -2.0

unix[2]

REFERENCE

[1] Kupferschmid, Michael, "Introduction to Mathematical Programming"

03 Jun 03 2


