
mymake(1) mymake(1)

NAME
mymake − Make requested targets with sanity checking and no unnecessary outputs.

SYNOPSIS
${HOME}/bin/mymake [target1 target2...]

DESCRIPTION
This shell script checks for a file named Makefile and stops if one is not found. Then it checks for blanks

following any continuation flag "\" and stops if one is found. Then it constructs a list of the targets speci-

fied in Makefile and stops if there are none or if there are too few targets to fulfill the request. If no targets

are specified it lists the possible targets and stops. Next it checks each request given on the command line

for the character "$" indicating a shell variable, and stops if there are any (a shell variable must be

expanded into a list of individual targets for processing by mymake). If any of the targets to be made might

be Fortran source and Makefile contains a default compilation rule, mymake checks the syntax of the rule.

If mymake stops because any of these tests fails, it sets a return code of 1.

If all of these tests succeed mymake processes the requests one at a time in succession. If in examining the

requests in succession mymake discovers one that does not match any target in Makefile, it reports that fact,

lists the possible targets, and stops. If a request does match a target, /usr/bin/make is inv oked to make the

target, redirecting standard out to /tmp/output and standard error to /tmp/errors (this does away with the

voluminous annoying noise output of /usr/bin/make). If /usr/bin/make fails, mymake reports that; if

/tmp/output has 20 or fewer lines they are copied to the screen. If mymake stops for any of these reasons, it

sets a return code of 2.

If /usr/bin/make succeeds, this script reports that fact and stops with a return code of 0.

DIAGNOSTICS
The return codes described above are summarized in this table.

0 all went well

1 a sanity check on the requests failed

2 /usr/bin/make failed to make a target

BUGS
When /usr/bin/make is inv oked it determines which targets will be made and in which order. This permits

parallel processing to update more than one target simultaneously, but it implicitly assumes that each target

will be updated only by its own Makefile stanza. Once /usr/bin/make has determined that it will make a tar-

get, updating the target’s modification time in some other stanza of the Makefile does not prevent it from

being made. This behavior is not affected by the --jobs option. Thus it is possible for a target to get made

ev en though it is more recent than its dependencies.

SEE ALSO
The man page for makemsg explains how to use it.

22 Jul 17 1



mymake(1) mymake(1)

REPORTING ERRORS
To discard noise output mymake must also discard other outputs from programs that are run in Makefile, so

useful error messages might be lost. Such messages can be written to the display by using makemsg.

If a program that is run in Makefile generates only an error message on standard-error, it can be printed by

using makemsg like this. Here "filter" is a program that reads from standard-in, writes to standard-out, and

issues error messages on standard-error.

filter < input > output 2>&1 | makemsg

If a program whose output is piped to makemsg stops without writing anything to the pipeline, the pipeline

presents makemsg with an end-of-file on its standard-in so it stops with return code 0 and mymake is not

interrupted. If the program writes a message to the pipeline, makemsg finds it on standard-in, writes the

message, and stops with return code 1 to interrupt mymake. Thus the locution illustrated above passes on

an error message and stops mymake if and only if "filter" writes something on standard-error.

If a program writing to a pipeline stops with a non-zero return code, the pipe completes anyway; it is the

last program in the pipeline that determines its return code.

If a program that is run in Makefile generates only an error message on standard-out, it can be printed by

using makemsg like this.

program | makemsg

If a program that runs in a Makefile produces output that should be presented to the user without interrupt-

ing mymake, it might be possible to capture the text in a file named fyle and then use makemsg "‘cat fyle‘"

to display it. In this locution the command cat fyle is enclosed in backquotes within the double quotes.

22 Jul 17 2


