
1

18.9 Extra-Precision Accumulation

A fundamental operation in numerical linear algebra, first mentioned in §6.3, is finding the
dot product of two vectors x and y as the following sum.

x⊤y =
n∑

j=1

xjyj .

This calculation is likely to be imprecise because of rounding error in the multiplications
and cancellation error when small terms are added into a large sum, as discussed in §4.3.
I mentioned there that cancellation error can be reduced by adding up the terms in as-
cending order of absolute value, but that is seldom done in finding the dot product because
precomputing and sorting the products xjyj uses significant extra memory and CPU time.
Nonetheless we often want a precise answer, so it is standard practice to instead accumulate
the sum at extra precision. For example, if the basic calculation uses REAL*4 numbers
the dot product might be coded using REAL*8 arithmetic like this.

REAL*4 X(100),Y(100),DOT

REAL*8 Z

:

Z=0.D0

DO 1 J=1,100

Z=Z+DBLE(X(J))*DBLE(Y(J))

1 CONTINUE

DOT=SNGL(Z)

:

Here the DBLE function (see §4.4) is used to cast X(J) and Y(J) to REAL*8 for the multipli-
cation, and SNGL is used to convert the result Z back to REAL*4. If your compiler supports
the REAL*16 data type, you can modify this code to compute accurate REAL*8 dot products.
But what if your compiler does not recognize REAL*16, or it does but the basic calculation
already uses REAL*16 and you want more precision than that? There is in fact a clever way
(see Stokes, and §4.3.3 of Knuth Volume 2) to perform the dot product calculation at extra
precision with variables of the same precision as those used to store the vectors, and with
only a small penalty in memory and processor time.
Multiplying two n-bit binary fractions a and b yields a product ab that is 2n bits long,

as in this example with n = 4.

• 1 1 1 0 = a
× • 1 1 0 1 = b

1 1 1 0

0 0 0 0

1 1 1 0

1 1 1 0

• 1 0 1 1 0 1 1 0 = ab

To store this result as a 4-bit binary fraction we must discard the least-significant 4 of its
fraction bits, or half of the bits that make up the answer! These bits are of course much
less important than the ones we keep, but neglecting them does introduce some error. The
right answer is .101101102 = 1

2
+ 1

8
+ 1

16
+ 1

64
+ 1

128
= 0.710937510 but the result we keep

is .10112 = 0.687510.

2

Instead suppose we split a into two parts so that a = ah + at, where ah is the value
of the high or most-significant n/2 bit positions of a and at is the value of the trailing or
least-significant n/2 bit positions. Then, if ah and at are stored as floating-point binary
fractions having n significand bits, the rightmost n/2 bits in each of them will be zero.
Splitting b will yield parts bh and bt that similarly have zeros in their n/2 least-significant
bit positions. Then we can find the product as

ab = (ah + at)(bh + bt) = ahbh + ahbt + atbh + atbt

where each partial product is exactly represented by a floating-point binary fraction of n
bits and can therefore be stored without any loss of precision. For our n = 4 example this
is how the process works.

a = .1110 = .1100× 20 + .1000× 2−2 = ah + at

b = .1101 = .1100× 20 + .0100× 2−2 = bh + bt

ahbh = (.1100× 20)× (.1100× 20) = .1001× 20

ahbt = (.1100× 20)× (.0100× 2−2) = .0011× 2−2

atbh = (.1000× 2−2)× (.1100× 20) = .0110× 2−2

atbt = (.1000× 2−2)× (.0100× 2−2) = .0010× 2−4

Each of the parts has n/2 = 2 trailing zeros, and each partial product just fits in n = 4
bits. If we align binary points and add partial products we get the same answer as before.

•10010000 = ahbh
•00001100 = ahbt
•00011000 = atbh
•00000010 = atbt

•10110110 = ab

To avoid losing the least-significant half of this result, we could accumulate the sum of the
partial products into a two-element vector of 4-bit floating-point binary fractions, ending
up with ab = [(.1011×20), (.0110×2−4)]. Once a whole dot product has been accumulated,
the less-significant parts of all the partial products will have added up instead of being lost
through cancellation, and we can obtain an accurate n-bit answer by adding the two n-bit
vector elements that we used to store the 2n-bit sum.
The MPYACC subroutine listed on the next page uses the splitting idea to perform a single

multiplication of the scalar X times the scalar Y, calling ADDACC to add each partial product
to the two-element accumulator XYSUM. Unlike a and b in the discussion above, X and Y

are 21 REAL*8 variables. According to §4.2 they have a sign bit and 11 exponent bits
preceding an implied “1.” and 52 bits of binary fraction, so in splitting them it is necessary
to preserve the sign and exponent bits. To split X we begin 35 by copying it into XH, which

is 25-26 overlaid by the two-element INTEGER*4 vector IXH. On a little-endian processor
the least-significant word of X comes first in memory (see §4.8) so another name for it is
IXH(1). This fullword we bitwise-and (see §4.6.3) with HMASK 37 which is initialized 27

at compile time to the bit pattern 11111100000000000000000000000000. The resulting
value of XH is thus X with its least-significant 26 (= n/2 in the discussion above) bits set
to zero. We want XH and XT to add up to X, so 38 XT is just X minus the XH we found.

The same process is used 39-42 to split Y into YH and YT. The parts XH, XT, YH, and YT,
are REAL*8 so they have 52 fraction bits, but of these the trailing 26 are zero. Finally the
code 45-52 computes the four 52-bit partial products (in order from smallest to largest)
and adds each to the extra-precision accumulator.

3

1 SUBROUTINE MPYACC(X,Y, XYSUM)

2 C This routine accumulates XYSUM=XYSUM+X*Y at extra precision.

3 C

4 C variable meaning

5 C -------- -------

6 C ADDACC routine adds to an extra-precision accumulator

7 C HMASK deletes the 26 least-significant fraction bits

8 C IAND Fortran function for bitwise logical AND

9 C IXH XH as 2 fullwords

10 C IYH YH as 2 fullwords

11 C P a partial product

12 C X first number in product

13 C XH split of X containing its high 26 fraction bits

14 C XT split of X containing value of trailing 26 bits

15 C XYSUM extra-precision accumulator

16 C Y second number in product

17 C YH split of Y containing its high 26 fraction bits

18 C YT split of Y containing value of trailing 26 bits

19 C

20 C formal parameters

21 REAL*8 X,Y,XYSUM(2)

22 C

23 C prepare to split X and Y

24 REAL*8 XH,XT,YH,YT

25 INTEGER*4 IXH(2),IYH(2)

26 EQUIVALENCE(XH,IXH),(YH,IYH)

27 INTEGER*4 HMASK/Z’FC000000’/

28 C

29 C prepare to compute the partial products

30 REAL*8 P

31 C

32 C --

33 C

34 C split X and Y into parts having 26 trailing fraction bits zero

35 XH=X

36 C this assumes the processor is little-endian

37 IXH(1)=IAND(IXH(1),HMASK)

38 XT=X-XH

39 YH=Y

40 C this assumes the processor is little-endian

41 IYH(1)=IAND(IYH(1),HMASK)

42 YT=Y-YH

43 C

44 C add the 52-fraction-bit exact partial products to accumulator

45 P=XT*YT

46 CALL ADDACC(P,XYSUM)

47 P=XT*YH

48 CALL ADDACC(P,XYSUM)

49 P=XH*YT

50 CALL ADDACC(P,XYSUM)

51 P=XH*YH

52 CALL ADDACC(P,XYSUM)

53 RETURN

54 END

4

The additions are accomplished by the ADDACC subroutine, which is listed on the next
page. ADDACC begins 24-30 by putting the larger of P and XYSUM(1) in U and the smaller in

V. This is to minimize cancellation error in the calculation 36 of U-Z (if U is close to Z=U+V

then little or no shifting will be needed to align the binary points in finding U-Z). Then 33

we find Z=U+V. Here some of the less-significant fraction bits of V are probably lost because V
must be shifted to align its binary point with that of U. How much error does that introduce?
The difference U-Z should be exactly -V, but because of cancellation it will differ from -V by
the error we seek. This is calculated 36 as ZZ. To that we add 39 the current contents of
the least-significant doubleword of the accumulator. If the least-significant doubleword has
grown big enough to be noticed if we added it to the most-significant doubleword, we want
to move that much of it there. So the most-significant doubleword of the accumulator then
becomes 42 the imprecise sum plus the correction to the sum plus the least significant

doubleword of the accumulator. Finally 45 we replace the least-significant doubleword of
the accumulator with the (small) amount that is necessary to make XYSUM(1)+XYSUM(2)

equal to the corrected sum Z+ZZ. The complicated process just described has the effect of
adding P to XYSUM at 2×52 = 104 bits of precision, which is almost the 112 bits of precision
we would get if we were able to use REAL*16 arithmetic.

5

1 SUBROUTINE ADDACC(P, XYSUM)

2 C This routine adds P to the extra-precision accumulator XYSUM.

3 C It must be compiled with optimization turned off.

4 C

5 C variable meaning

6 C -------- -------

7 C DABS Fortran function returns |REAL*8|

8 C P quantity to be added to the accumulator

9 C U the larger in absolute value of P and XYSUM

10 C V the smaller in absolute value of P and XYSUM

11 C XYSUM the accumulator

12 C Z most significant part of sum

13 C ZZ least significant part of sum

14 C

15 C formal parameters

16 REAL*8 P,XYSUM(2)

17 C

18 C local variables

19 REAL*8 U,V,Z,ZZ

20 C

21 C --

22 C

23 C put the larger quantity in U and the smaller in V

24 IF(DABS(XYSUM(1)) .LT. DABS(P)) THEN

25 U=P

26 V=XYSUM(1)

27 ELSE

28 U=XYSUM(1)

29 V=P

30 ENDIF

31 C

32 C find the sum, imprecisely

33 Z=U+V

34 C

35 C compute the error that was made by rounding U+V to REAL*8

36 ZZ=(U-Z)+V

37 C

38 C add to it the least significant part of the accumulator

39 ZZ=ZZ+XYSUM(2)

40 C

41 C that might be enough to increase the most significant part

42 XYSUM(1)=Z+ZZ

43 C

44 C make the least significant part of accumulator what is left

45 XYSUM(2)=(Z-XYSUM(1))+ZZ

46 C

47 RETURN

48 END

6

The DDOTQ function listed on the next page uses MPYACC to compute a dot product using
extra-precision accumulation. After doing some sanity-checking 23-24 it initializes the

accumulator XYSUM to zeros 27-28 . Instead of the multiply-and-add loop we had before

we now have 29-31 a loop of calls to MPYACC. On each invocation that routine computes
X(J)× Y(J) and adds it to the accumulator as described above. When the loop is finished
we find the dot product 34 by adding together the most- and least-significant doublewords
of the accumulator.
The program below compares DDOTQ to DDOT for finding a troublesome dot product.

REAL*8 X(101),Y(101),DDOT,ANS,DDOTQ,ANSQ

X(1)=1.D+08

Y(1)=1.D+08

DO 1 J=2,101

X(J)=DFLOAT(J-1)

Y(J)=1.D0/DFLOAT(J-1)

1 CONTINUE

ANS=DDOT(X,Y,101)

ANSQ=DDOTQ(X,Y,101)

WRITE(6,901) ANS,ANSQ

901 FORMAT(’DDOT finds ’,1PD23.16/

; ’DDOTQ finds ’,1PD23.16)

STOP

END

The program manufactures the following problem.

x = [108, 1, 2, 3, . . . , 100]

y = [108, 1, 1
2
, 1

3
, . . . , 1

100
]

x⊤y = 1016 + (1 × 1) + (2× 1

2
) + (3× 1

3
) + · · ·+ (100× 1

100
) = 10000000000000100

When the program is compiled with gfortran and run, it produces the following out-
put. The product of the first two terms, 1016, is big enough so that the subsequent terms
contribute nothing to the sum when DDOT does the calculation using REAL*8 arithmetic.
However, when DDOTQ does the calculation using extra-precision accumulation the correct
result is obtained.

unix[1] a.out

DDOT finds 1.0000000000000000D+16

DDOTQ finds 1.0000000000000100D+16

unix[2]

This chapter has introduced two-part values, which can be used to perform fixed-point
arithmetic with numbers too big to store in an INTEGER*4, and extra-precision accumulation
for computing floating-point dot products more precisely than we can by simply doing
REAL*8 arithmetic. It is also possible to use Classical Fortran for integer calculations of
arbitrary precision, as described in §20.6 of Numerical Recipes for example, and for floating-
point calculations of arbitrary precision by invoking Brent’s multiple precision package.

7

1 FUNCTION DDOTQ(X,Y,N)

2 C This routine computes the dot product of X with Y,

3 C using extra-precision accumulation.

4 C

5 C variable meaning

6 C -------- -------

7 C J index on the elements of X and Y

8 C MPYACC routine does extra-precision multiply and accumulate

9 C N number of elements in X and Y

10 C X one of the vectors in the dot product

11 C XYSUM extra-precision result

12 C Y the other vector in the dot product

13 C

14 C formal parameters

15 REAL*8 DDOTQ,X(N),Y(N)

16 C

17 C local variable

18 REAL*8 XYSUM(2)

19 C

20 C --

21 C

22 C check for a sensible value of N

23 DDOTQ=0.D0

24 IF(N.LE.0) RETURN

25 C

26 C accumulate the product at extended precision

27 XYSUM(1)=0.D0

28 XYSUM(2)=0.D0

29 DO 1 J=1,N

30 CALL MPYACC(X(J),Y(J), XYSUM)

31 1 CONTINUE

32 C

33 C return a double-precision answer

34 DDOTQ=XYSUM(1)+XYSUM(2)

35 RETURN

36 END

Reference

The paper mentioned on page 1 is Stokes, H. H., “The sensitivity of econometric results to
alternative implementations of least squares,” Journal of Economic and Social Measurement

30 (2005) 9-38. In the source code of Stokes’ B34S program, this approach to implementing
the extra precision accumulation idea is attributed to “1980 IMSL code that is no longer
supported.”

License

Copyright c© 2023 Michael Kupferschmid, all rights reserved.

This supplementary textbook Section is licensed under cc-by 4.0.

Anyone who complies with the terms specified in

https://creativecommons.org/licenses/by/4.0/legalcode.txt

may use the work in the ways therein permitted.

